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Abstract——The scavenger receptor cysteine-rich
(SRCR) superfamily of soluble or membrane-bound
protein receptors is characterized by the presence of
one or several repeats of an ancient and highly con-
served protein module, the SRCR domain. This super-
family (SRCR-SF) has been in constant and progres-
sive expansion, now up to more than 30 members. The
study of these members is attracting growing interest,
which parallels that in innate immunity. No unifying
function has been described to date for the SRCR do-
mains, this being the result of the limited knowledge
still available on the physiology of most members of
the SRCR-SF, but also of the sequence versatility of
the SRCR domains. Indeed, involvement of SRCR-SF
members in quite different functions, such as patho-
gen recognition, modulation of the immune response,

epithelial homeostasis, stem cell biology, and tumor
development, have all been described. This has
brought to us new information, unveiling the possibil-
ity that targeting or supplementing SRCR-SF proteins
could result in diagnostic and/or therapeutic benefit
for a number of physiologic and pathologic states. Re-
cent research has provided structural and functional
insight into these proteins, facilitating the develop-
ment of means to modulate the activity of SRCR-SF
members. Indeed, some of these approaches are al-
ready in use, paving the way for a more comprehen-
sive use of SRCR-SF members in the clinic. The pres-
ent review will illustrate some available evidence on
the potential of well known and new members of the
SRCR-SF in this regard.

I. Introduction

Innate immunity is an ancient and universal form of
host defense against invading pathogens but also an
integral part of a broader system responsible for the
homeostasis of the internal environment in multicellu-
lar organisms. It is usually regarded as the first line of
defense for such organisms, both plants and animals,
implicating that it first arose before these two kingdoms
diverged. Its main function is to detect nonself molecules
and eliminate them, whether directly or through the
stimulation of an adaptive immune response. To do this,
receptors have evolved that recognize pathogen-associ-
ated molecular patterns (PAMPs1), which are conserved,
essential for the pathogen survival, and not shared by
the host. Examples of those PAMPs recognized by innate

immune receptors are lipopolysaccharide (LPS) from
Gram-negative bacteria, lipoteichoic acid (LTA), pepti-
doglycan from Gram-positive bacteria, or �-glucans and
mannans from yeast. The innate immune receptors rec-
ognizing PAMPs are termed pattern-recognition recep-
tors (PRRs). Only a limited number of PRRs are present
in the genome that are germline-encoded and have been
acquired by natural selection (Janeway and Medzhitov,
2002). Aside from PAMPs, PRRs are able to bind and
establish a response to a number of other ligands, in-
cluding modified self-ligands, and thus play a role in the
modulation of autoimmunity (Palm and Medzhitov,
2009).

The C-type lectin domain, the leucine-rich repeat,
and the scavenger receptor cysteine-rich (SRCR) do-
main are prominent protein domains associated with
pattern recognition (Gordon, 2002). The SRCR domain
is the common feature in a group of proteins termed
the SRCR superfamily (SRCR-SF). Although key res-
idues in the SRCR domain have been conserved with
relatively little change throughout evolution, other
amino acids surrounding them have evolved freely,
thus generating a myriad of proteins with vast func-
tional diversity. The variability of the SRCR domain is
not limited to its structure but is also defined by
numerical variations of the domain, ranging from sin-
gle copy to up to 14 repeated domains. Furthermore,
many SRCR-SF members are mosaic or multidomain
proteins, adding to the multifaceted nature of these
proteins. Proteins containing SRCR domains have
been proposed to function in the homeostasis of epi-
thelia and the immune system, and some have been
associated with a number of diseases and pathogenic
states, such as atherosclerosis, Alzheimer’s disease,
autoimmune diseases and cancer, thus exhibiting

1Abbreviations: AIM, apoptosis inhibitory molecule; ALCAM, ac-
tivated leukocyte cell adhesion molecule; BTB/POZ, broad complex,
tramtrack and bric-a-brac/poxvirus and zinc finger; CRP-ductin, C-
reactive protein-ductin; CUB, complement C1r/C1s, Uegf, Bmp1;
DMBT1, deleted in malignant brain tumors 1; ECM, extracellular
matrix; Hb, hemoglobin; HCC, hepatocellular carcinoma; HO, heme
oxygenase; Hp, haptoglobin; IL, interleukin; IVR, intervening region;
kb, kilobase(s); LDL, low-density-lipoprotein; LPS, lipopolysaccha-
ride; LTA, lipoteichoic acid; Mac-2BP, Mac-2-binding protein;
MARCO, macrophage receptor with collagenous structure; NK, nat-
ural killer; PAMP, pathogen-associated molecular pattern; PBMC,
peripheral blood mononuclear cell; PKC, protein kinase C; PMA,
phorbol 12-myristate 13-acetate; PRR, pattern-recognition receptor;
PRRSV, porcine reproductive and respiratory syndrome virus; PST,
proline-serine-threonine; rshCD5, recombinant soluble human CD5;
rshCD6, recombinant soluble human CD6; SAG, salivary agglutinin;
sCD163, soluble CD163; SID, SRCR interspersed domain; SLE, sys-
temic lupus erythematosus; Sp�, secreted protein �; SP, surfactant
protein; SR, scavenger receptor; SR-AI, scavenger receptor type I A;
SRCR, scavenger receptor cysteine-rich; SRCR-SF, scavenger recep-
tor cysteine-rich superfamily; TCR, T-cell receptor; TLR, Toll-like
receptor; TNF, tumor necrosis factor; Treg, T-regulatory cells; ZP,
zona pellucida.
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promising potential as targets for diagnostic and/or
therapeutic intervention.

II. The Scavenger Receptor
Cysteine-Rich Superfamily

A. History and Definition. Scavengers versus Scavenger
Receptor Cysteine-Rich Proteins

The superfamily of receptors with SRCR domains was
described at the beginning of the nineties upon the iden-
tification of a series of receptors containing one or sev-
eral extracellular domains homologous to the cysteine-
rich C-terminal domain of the type I class A scavenger
receptor expressed in macrophages (SR-AI) (Freeman et
al., 1990). Certain features common to both the SRCR
and the immunoglobulin domain suggested at first that
these proteins could be related to the Ig superfamily:
indeed, all its members were either cell-surface or se-
creted proteins, presenting cysteine-containing tandem-
repeated domains and expressed in cells of the immune
system (Huang et al., 1987; Resnick et al., 1994). How-
ever, this theory was not supported by detailed align-
ment analysis. It was then speculated that these pro-
teins could be related to the bacterial chaperone PapD,
which mediates the assembly of pili in Escherichia coli
(Holmgren and Bränden, 1989). This protein possesses
two Ig-like domains that share a certain homology with
the SRCR-SF member CD5; again, further alignment
analysis did not support the idea that these proteins
belonged to the same family. It then became clear that
these proteins form a separate superfamily, termed
SRCR.

Scavenger receptors (SRs) were initially defined by
their ability to uptake modified lipoproteins (Brown and
Goldstein, 1983). It is now known that these receptors
have a much broader ligand-binding capacity, including
also polyribonucleotides, proteins, polysaccharides, and
lipids. Some of these are host molecules (such as oxi-
dized or acetylated LDL, haptoglobin-hemoglobin com-
plexes, or polysulfated structures) and others are of
pathogenic origin (such as LPS or LTA). The factor com-
mon to these ligands is their polyanionic nature, so the
term SR now defines an extracellular glycoprotein (ei-
ther soluble or membrane-bound) involved in the recog-
nition and/or endocytosis of negatively charged mole-
cules (Sarrias et al., 2004a). It is noteworthy that not all
polyanionic molecules are SR ligands, indicating that
there are structural as well as charge requirements for
binding. Most SRs are multidomained proteins; how-
ever, no common domain has been identified that con-
fers scavenger activity to an extracellular protein
(Gough and Gordon, 2000). Thus, SRs constitute a func-
tional family of structurally unrelated receptors. The
opposite situation is true for the SRCR-SF, whose mem-
bers are closely related from the structural point of view
but share few common functions. The fact that some
SRCR-SF members behave functionally as SRs has in-

troduced a certain degree of confusion between these two
families of innate receptors. Indeed, even when an SRCR
domain is present, it is not necessarily involved in ligand
binding, as seems to be the case for SR-AI (Rohrer et al.,
1990).

B. Structure of the Scavenger Receptor Cysteine-Rich
Domains: Group A and B Members

SRCR domains are approximately 90 to 110 amino
acids long and are characterized by their high and well
defined cysteine content (Resnick et al., 1994; Sarrias et
al., 2004a). Depending on the characteristics of their
SRCR domains, two types of SRCR-SF members are
reported: those with type A domains, which are encoded
by at least two exons and contain six cysteine residues,
and those with type B domains, encoded by a single exon
and containing eight cysteine residues. There are, how-
ever, some exceptions: for instance, some group A mem-
bers, such as SR-AIII, present truncated SRCR domains
containing four cysteines (Rohrer et al., 1990). Likewise,
isolated domains containing six cysteines are found
among group B members, as is the case with CD5,
CD163, WC1, and MC16 (Sarrias et al., 2004a). More-
over, Sp�/AIM, WC1/T19 and CRP-ductin (mouse
DMBT1) possess individual domains containing seven
cysteines. However, the simultaneous presence of type A
and B domains on the same SRCR-SF receptor has never
been reported. Sequence analysis revealed that al-
though SRCR domains share different levels of homol-
ogy, the relative position of cysteines is well conserved
within the domain, as is the pattern of disulfide bonds.
Thus, sequence analysis revealed that cysteines C1 and
C4 form a disulfide bond, because they are always pres-
ent in group B but not group A. Proteolytic analysis
showed that the other cysteine pairs forming disulfide
bonds are C2-C7, C3-C8, and C5-C6 (Resnick et al.,
1996). These results have been confirmed by structural
analysis of crystallized individual protein domains. The
first SRCR domain crystallized was the type A domain of
Mac-2BP, which revealed a compact fold organized
around a curved six-stranded �-sheet cradling an �-helix
(Hohenester et al., 1999), as well as the replacement of
C4 present in group B members by an aromatic amino
acid. A similar compact globular fold was found for the
group A SRCR domain of MARCO (Ojala et al., 2007). In
this case, however, the fold was composed of a twisted
five-stranded antiparallel �-sheet and a long loop cover-
ing a single �-helix. Analysis of the dimerized protein
revealed that it contains a large eight-stranded �-sheet
formed by �-sheet swapping between the two monomers.
This different conformation might explain why certain
ligands can only be bound by SRCR-SF members in
multimeric form. The �-sheet was found to contain a
series of basic residues, among them a cluster of argi-
nines, which were essential for ligand binding; the fact
that all of them seemed to be needed for binding sug-
gests the existence of a cooperative effect. Binding was
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also shown to be dependent on Ca2� ions, presumably
because these ions modulate electrostatic charges and
might help accommodate the ligand in the binding site.
An acidic cluster on the long loop region was also re-
vealed that seems to be involved in metal ion binding.

It should be noted that group B SRCR domains of only
one protein have been crystallized to date, correspond-
ing to the most membrane-proximal (D3) (Rodamilans et
al., 2007) and distal (D1) SRCR domains (Garza-Garcia
et al., 2008) of CD5. It is noteworthy that, on the basis of
the available data, the basic three-dimensional struc-
ture characteristics of group A and B SRCR domains
seem to be superimposable and therefore indistinguish-
able, which makes it questionable to maintain the exis-
tence of two different types of SRCR domains from the
structural point of view.

C. Phylogeny and Ontogeny

Currently, the SRCR-SF contains more than 30 mem-
bers, but this number is in constant and progressive
expansion (Sarrias et al., 2004a) (see Tables 1 and 2;
Figs. 1 and 2). Although the great majority of SRCR-SF
members have been described in mammals (man,
mouse, rat, pig, cow, rabbit, sheep), these proteins have
also been detected in other species of vertebrates,
whether highly developed (birds, amphibians) or primi-
tive (fish), in invertebrates (sponges, echinoderms, in-
sects), and even in algae (Wheeler et al., 2008). Sponges
constitute the oldest and lowest metazoan phylum;
within them, Geodia cydonium, from the family Geodii-
dae, represents the oldest living group (Müller et al.,
1999). Several alternatively spliced forms of an SRCR
group A protein and a group B protein have been iden-
tified in G. cydonium (Pancer et al., 1997; Blumbach et
al., 1998; Pahler et al., 1998). The group A protein has
both membrane-bound and soluble forms, whereas the
SRCR domain of MAP_GEOCY, the group B protein,
displays high homology with those of CD5 and CD6.
These facts indicate that this superfamily is indeed very
ancient and conserved throughout the phylogenetic
scale. These receptors may act as pattern recognition
receptors in the traditional sense in these organisms but
are believed to be more important for protein-protein
interaction (Bowdish and Gordon, 2009).

All eutherian (placental) mammals express a form of
SR-A, suggesting that this gene was present in the an-
cestral stage, before the separation of this family from
the common tree that would give rise to birds and am-
phibians (Bowdish and Gordon, 2009). This is further
reinforced by the presence of SR-A homologs outside
eutherian mammals, such as Eater in Drosophila mela-
nogaster (Kocks et al., 2005). This could change in the
future when more complete genome analysis data for
lower phyla are available. MARCO homologs, on the
other hand, have been found in chicken, zebrafish, and
sea urchin, suggesting that it is closer to the ancestral
gene from which SR-A evolved. However, more evidence

is needed before this can be asserted. A notable differ-
ence between these two receptors is that the SRCR do-
main of SR-A is poorly conserved between species,
whereas there is high sequence identity among SRCRs
from MARCO homologs. This could be explained by the
fact that the SRCR domain of MARCO acts as a pattern
recognition receptor, whereas this domain does not seem
to be required for bacterial binding by SR-A.

D. General Function(s)

Members of the SRCR-SF may display type A or B
SRCR domains, single or tandem-repeated, embedded or
not in mosaic or multidomain proteins [with domains
such as EGF, collagen, SCR, complement C1r/C1s, Uegf,
Bmp1 (CUB), zona pellucida (ZP), protease domains,
etc.]. Such variability is in part responsible for the fact
that functional activities attributed to the members of
the SRCR-SF have rarely been unequivocally assigned
to their SRCR domains. Even though the precise, char-
acteristic biological function of the SRCR domain re-
mains to be determined, the current paradigm states
that these domains may mediate protein-protein inter-
actions, whether homo- or heterotypical, such as the one
described for CD6 and ALCAM (Bowen et al., 1996) or
CD163 and the hemoglobin-haptoglobin complex (Kris-
tiansen et al., 2001). However, some data would indicate
that some members of the SRCR-SF are indeed able to
recognize PAMPs (Bikker et al., 2002, 2004a; Brän-
nström et al., 2002; Sarrias et al., 2005, 2007; Fabriek et
al., 2009; Vera et al., 2009).

The SRCR-SF includes secreted as well as membrane-
bound proteins, some of which have been implicated in
the development of the immune system and in the reg-
ulation of immune responses, both innate and adaptive
(Aruffo et al., 1997). In mammals, members of the
SRCR-SF can be found in lymphocytes, but most of them
are expressed in epithelia and in the mononuclear-
phagocytic system, displaying multiadhesive and/or en-
zymatic properties (e.g., protease or oxidase activities),
which could suggest an important role for them in mu-
cosal defense.

III. Class A Macrophage Scavenger Receptor
Type I: the Prototypical Scavenger Receptor

SR-AI is a �220-kDa trimeric type II surface glyco-
protein initially identified as an acetylated LDL bind-
ing receptor in bovine lung (Kodama et al., 1988). The
protein consists of three identical subunits of �77
kDa; each subunit contains an intracellular N-termi-
nal domain, a transmembrane region, a spacer do-
main, an �-helical coiled-coil domain followed by a
collagenous domain and an isoform-specific domain at
the C terminus, which for SR-AI is a type A SRCR
domain. The �-helical coiled-coil domain is composed
of seven-amino acid repeats and seems to be impor-
tant for SR-AI trimerization, which occurs through
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the collagenous region; thus, both regions seem to be
needed (Ashkenas et al., 1993). Homologs to SR-AI
have been identified in cow, mouse, and D. melano-
gaster (Freeman et al., 1990; Kodama et al., 1990;
Rohrer et al., 1990; Gough and Gordon, 2000), sug-
gesting that this receptor is conserved across different
species, including nonmammalian ones.

Three different forms of SR-A exist: SR-AI, SR-AII,
and SR-AIII. These are generated by alternative splicing
from the same gene (Emi et al., 1993; Gough et al.,
1998). SR-AII differs from SR-AI in that the C-terminal
SRCR domain is replaced by a six-residue sequence
(Rohrer et al., 1990); SR-AII is still able to bind acety-
lated LDL with high affinity, indicating that the SRCR
is not implicated in the binding. SR-AIII is a truncated
form of SR-A lacking the amino acids coded by exons 9
and 10 and two of the six cysteines from the SRCR
C-terminal region; this deletion results in altered intra-
cellular processing of this receptor, so that it is not
inserted in the cell membrane but instead is retained in
the endoplasmic reticulum. It is noteworthy that this
form acts as a dominant-negative receptor, decreasing
acetylated LDL uptake by SR-AI and SR-AII (Gough et
al., 1998). It has been speculated that this could be a
post-translational mechanism of SR-AI/II activity regu-
lation.

SR-AI and II are mainly expressed by macrophages,
including Kupffer cells in the liver, alveolar macrophages,
and foam cells in atherosclerotic regions. Perivascular
macrophages surrounding arterioles in normal brain,
termed MATO cells, also express SR-AI/II (Matsumoto et
al., 1990; Naito et al., 1992; Honda et al., 1998; Gough et
al., 1999). Expression of SR-AI/II is not exclusive of mac-
rophages: this receptor has been detected in dendritic cells
and endothelial as well as in smooth muscle cells (Pitas,
1990; Bickel and Freeman, 1992; Harshyne et al., 2003).
SR-AI expression seems to correlate with macrophage dif-
ferentiation, whereas SR-AII can be readily detected in
monocytes, and its levels do not appear to increase signif-
icantly with macrophage differentiation (Geng et al.,
1994). It is noteworthy that increased SR-AI/II expression
in mature macrophages seems to protect these cells from a
number of different apoptotic stimuli, including oxidized
LDL (Liao et al., 1999; Liao et al., 2000). Transfection with
SR-AI/II also protected Jurkat and Chinese hamster ovary
cells from apoptosis. This could explain why macrophages
expressing SR-AI/II can interact with cytotoxic compounds
such as oxidized LDL without undergoing apoptosis.

A. Role in Scavenging and Other Macrophage
Homeostatic Functions

Although SR-AI was initially described as an acety-
lated LDL-binding receptor (Kodama et al., 1988), it was
later found that its binding specificity is much broader,
including modified—but not unaltered—lipoproteins,
advanced glycation end products, bacterial surface lip-
ids, and certain nucleotide aggregates (Krieger et al.,

1993; Araki et al., 1995; Suzuki et al., 1999). These
ligands seem to bind equally to SR-AI and -II, although
some differences in affinity have been observed for
acetylated LDL and Escherichia coli (Ashkenas et al.,
1993; Peiser et al., 2000). All the ligands identified so far
are polyanionic, suggesting that the SR-A–ligand inter-
action is electrostatic. Indeed, a charged structure
formed by a cluster of basic amino acids highly con-
served among different species and located in the collag-
enous region of SR-AI/II seems to mediate binding in the
multimeric form (Doi et al., 1993), whereas the mono-
mers are unable to bind acetylated LDL (Tanaka et al.,
1993, 1996). Thus, so far, the SRCR domain seems to
play a small, if any, role in ligand binding in this receptor.

Ligand binding by SR-AI/II triggers endocytosis and
activates signaling pathways, including Mer receptor
tyrosine kinase (Mertk), protein kinase C and the mito-
gen-activated protein kinase pathway, phosphatidylino-
sitol bisphosphate hydrolysis, changes in intracellular
Ca2� levels, and nuclear factor �B-mediated transcrip-
tion (Misra et al., 1996; Hsu et al., 1998, 2001; Coller
and Paulnock 2001; Todt et al., 2008). It has been shown
that different ligands elicit activation of different path-
ways. It is noteworthy that acetylated and oxidized LDL
appear to bind to different, albeit interacting sites on
SR-AI/II (Freeman et al., 1991). The existence of differ-
ent binding sites could explain the existence of ligand-
specific responses.

Uptake of modified LDL into macrophages leads to the
formation of foam cells, which are found in atherosclerotic
lesions. This has prompted authors to propose a proathero-
genic role for SR-AI/II (Febbraio et al., 2000; Kamada et
al., 2001). Indeed, macrophages from mice deficient in
SR-A show severely impaired ability to take up modified
LDL (Lougheed et al., 1997). Furthermore, in hyperlipid-
emic mouse models [apoE(�/�) and LDLR(�/�)], SR-AI/II
deficiency decreases the size of atherosclerotic lesions (Su-
zuki et al., 1997; Sakaguchi et al., 1998). However, foam
cells were still present in the double knockout mice, sug-
gesting that another receptor for modified LDL can induce
their formation; candidates for this role are MARCO,
CD36, and macrosialin (Sakaguchi et al., 1998). Overex-
pression of SR-AI/II, on the other hand, does not seem to be
sufficient on its own to promote atherogenesis, although it
seems to increase serum cholesterol levels (Herijgers et al.,
2000; Van Eck et al., 2000).

The role of SR-AI/II-expressing macrophages in
atherogenesis was demonstrated with a series of exper-
iments carried out on both wild-type and LDLR(�/�)
mice. In these experiments, mice were irradiated to abol-
ish bone marrow function and subsequently reconsti-
tuted with either SR-A(�/�) or SR-A(�/�) cells (Babaev
et al., 2000). In both wild-type and LDLR(�/�) mice,
reconstitution with SR-A(�/�) cells resulted in a signif-
icant reduction in atherosclerotic lesions compared with
mice that had been reconstituted with SR-A(�/�) cells.
It has been shown that uptake of oxidized LDL mediated
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TABLE 1
Group A SRCR proteins

Proteins described in mammals, unless indicated otherwise.

Name No. SRCR Other Domains Expression Function Form References

SR-AI/II/III 1/0/1TRUN Coiled-coil,
collagen

Macrophages Binding to bacteria, modified
LDL and other ligands,
endocytosis

M, RE Freeman et al., 1990;
Kodama et al.,
1990; Gough et al.,
1998

MARCO 1 Collagen Macrophages Binding to bacteria and
modified LDL; binding to
UGRP1

M Elomaa et al., 1995

SCARA5 1 Collagen Testis, bladder, trachea,
lung, adrenal gland,
skin, ovary, kidney,
aorta and muscle

Binding to bacteria; ferritin
receptor; tumor suppressor

M Jiang et al., 2006

Speract receptor 4 Strongylocentrotus
purpuratus (marine
sea urchin) sperm

Sperm activator peptide M Dangott et al., 1989

M2BP/gp90/ CyCAP 1 BTB/POZ, IVR Intestinal duct, lung,
human fluids and
carcinoma

Binding to cyclophilin C,
galectin-3, collagen, �1-
integrins and fibronectin

S Friedman et al.,
1993; Koths et al.,
1993

LOXL2/WS9–14/LOR 3–4 LOX Fibroblasts, adherent
tumor cell lines and
reproductive tissues;
described in
mammals, Perca
flavescens and D.
melanogaster

Role in cell adhesion and
senescence

S Saito et al., 1997;
Jourdan-Le Saux
et al., 2000; Kocks
et al., 2005

LOXL3 4 LOX Heart, CNS,
reproductive tissues,
colon, spleen and
leukocytes

Unknown S Jourdan-Le Saux et
al., 2001

LOXL4 4 LOX Pancreas, testicles and
fibroblasts

Unknown S Asuncion et al., 2001

AR/SRCR-SCR 14 SCR Spherolous cells of G.
cydonium (marine
sponge)

Aggregation factor receptor M, S Pancer et al., 1997;
Blumbach et al.,
1998

SpSRCR1 4 vWF, ECM S. purpuratus
coelomocytes

Unknown S Pancer et al., 1999

SpSRCR5 2 S. purpuratus
coelomocytes

Unknown S Pancer et al., 1999

SpSRCR6 3 vWF S. purpuratus
coelomocytes

Unknown S Pancer, 2000

SpSRCR7 7 SCR, EGF S. purpuratus
coelomocytes

Unknown M Pancer, 2000

SpSRCR12 20 S. purpuratus
coelomocytes

Unknown S Pancer, 2000

SpSRCR20 7 S. purpuratus
coelomocytes

Unknown S Pancer, 2000

CFI 1 Protease, LDL-R,
FIMAC

Secreted to plasma by
monocytes, described
in mammals and X.
laevis

Serine protease, regulates the
complement cascade

S Goldberger et al.,
1987

TRAMP 2 Protease, LDL-R,
apple

Mesenchymal cells
during
Polyandrocarpa
misakiensis (tunicate)
gemmation

Serine protease S Ohashi et al., 1999

Sp22D/GRAAL-
Tequila

2 Protease, LDL-R,
mucin, CBD

Hemocytes and intestine
of Anopheles gambiae
(mosquito) and D.
melanogaster

Serine protease S Gorman et al., 2000

Neurotrypsin/Leydin/
BSSP3/259PRSS12/
Motopsin

3–4 Protease, kringle Brain, lung, kidney, and
testicular cells of
Leydig

Serine protease S Yamamura et al.,
1997; Proba et al.,
1998

Xesp-2 1 TRUN Protease, LDL-R Embryos and adult
tissues of X. laevis

Serine protease;
blastula/gastrula formation

M Yamada et al., 2000

Enterokinase/
Enteropeptidase

1 TRUN Protease, LDL-R,
meprin, CUB,
SEA

Intestine Serine protease; digests
trypsinogen; main activator
of digestive hydrolases

M, S Kitamoto et al., 1994

Corin 1 TRUN Protease, LDL-R,
Frizzled

Heart Serine protease; digests atrial
natriuretic propeptide

M Yan et al., 1999,
2000

Epitheliasin/
TMPRSS2

1 TRUN Protease, LDL-R Intestine, liver, heart,
lung, kidney, and fetal
brain

Serine protease M Paoloni-Giacobino et
al., 1997;
Jacquinet et al.,
2000
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by SR-AI/II induces macrophage proliferation (Sakai et
al., 1996); this could create a positive loop that progres-
sively worsens atherosclerotic lesions. Overall, these re-
sults suggest that SR-AI/II expression induces the load-
ing of macrophages with modified lipoproteins to
generate foam cells; accumulation of foam cells then
results in atherosclerotic lesions. Furthermore, consid-
ering that SR-A expression has an antiapoptotic effect in
macrophages (Liao et al., 1999, 2000), this receptor
could also promote atherogenesis by enhancing macro-
phage survival within lesions, allowing them to take up
more lipids and causing further endothelial damage.
This theory, however, was challenged by studies with
transgenic mouse models overexpressing SR-A, which
showed decreased size of atherosclerotic lesions in two
different atherosusceptible models (De Winther et al.,
2000). These differences could be ascribed to the differ-
ent constructs used for the generation of transgenic mice
but also to the different susceptibility of mouse strains
to atherosclerosis. The controversy, however, warrants
further investigation.

Uptake of ligands by SR-AI/II is related not only to athero-
sclerosis but also to Alzheimer’s disease and other degenera-
tive brain conditions. Indeed, aggregated and/or glycated
�-amyloid protein can be endocytosed by SR-AI/II-expressing
microglial cells located in the vicinity of senile plaques from
patients with Alzheimer’s disease (Christie et al., 1996; Yan
et al., 1996). Binding and uptake of modified �-amyloid pro-
tein results in cell activation and generation of reactive oxy-
gen species, which can cause neuronal damage (Christie et
al., 1996; El Khoury et al., 1996; Paresce et al., 1996). This
could be important in the pathogenesis of senile dementia.

Apart from its potential role in pathologic conditions,
SR-AI/II has also been implicated in homeostatic mac-
rophage functions, such as adhesion to extracellular ma-
trix (ECM). Indeed, blocking SR-AI/II with a monoclonal
antibody results in decreased adhesion of macrophages
to plastic (Fraser et al., 1993) and smooth muscle extra-
cellular matrix (Santiago-García et al., 2003). Con-
versely, macrophages from patients suffering from a
familial disorder causing overexpression of SR-AI/II dis-

play increased adhesion and overaccumulation of lipids
(Giry et al., 1996). Adhesion to ECM components medi-
ated by SR-AI/II seems to take place only when these
components have been degraded, heat-denatured, gly-
cated, or enzymatically modified (el Khoury et al., 1994;
Gowen et al., 2001). Glycation of ECM components oc-
curs in the basal membrane of arterial walls during
aging and diabetes, creating potential binding sites for
SR-AI/II-expressing macrophages and increasing the
risk of atherosclerotic lesion development.

Removal of apoptotic cells by phagocytic macrophages
also seems to be mediated by SR-AI/II, although results
with knockout mice suggest the presence of a redundant
receptor that exerts this function in the absence of SR-A
(Platt et al., 1996, 2000; Getchell et al., 2006). Removal
of inhaled particles also seems to be mediated, at least in
part, by SR-AI/II: alveolar macrophages can bind and
phagocytize crocidolite asbestos, the causative agent of
asbestosis, via SR-AI/II, suggesting that this receptor
could be involved in the pathogenesis of asbestosis and
mesothelioma (Resnick et al., 1993).

B. Role in Innate Immune Defense
against Microorganisms

Involvement of SR-A in the phagocytic activity of mac-
rophages has been discussed in the previous section with
regard to the removal of apoptotic cells and inhaled
particles. However, other targets can be phagocytized by
macrophages and elicit an immune response. Indeed,
SR-AI/II has been shown to efficiently bind to and
phagocytize a number of bacterial species, including E.
coli, Staphylococcus aureus, Streptococcus pyogenes,
Streptococcus agalactiae, Enterococcus hirae, Neisseria
meningitidis, and Listeria monocytogenes (Dunne et al.,
1994; Peiser et al., 2000; Plüddemann et al., 2009b).
Interaction with SR-AI/II seems to be mediated by lipo-
polysaccharides from the bacterial surface: LPS- and
LTA-coated latex beads were also bound and internal-
ized by SR-AI/II-expressing cells. Further evidence for
the importance of SR-AI/II expression in phagocytosis of
pathogens is provided by macrophages from SR-A(�/�)

TABLE 1
Continued

Name No. SRCR Other Domains Expression Function Form References

TMPRSS3 1 TRUN Protease,LDL-R Pancreatic tumors,
urogenital and
gastrointestinal tracts

Serine protease M Wallrapp et al., 2000

Spinesin/TMPRSS5 1 TRUN Protease Spinal medulla Serine protease M Yamaguchi et al.,
2002

Hepsin 1 Protease Various human, rat, and
baboon tissues,
especially liver. Also
renal cell carcinoma,
ovarian cancer,
prostate cancer, and
hepatoma cells

Serine protease M Leytus et al., 1988;
Somoza et al.,
2003

Abbreviations: CBD, chitin binding domain; CNS, central nervous system; EGF, epidermal growth factor; FIMAC, factor I membrane attack complex; LDL-R, low density
lipoprotein receptor; LOX, lysil oxidase; M, membrane; S, secreted; SCR, short consensus repeat; SEA, domain found in sea urchin sperm protein, enterokinase. and agrin;
RE, retained in the endoplasmic reticulum; TRUN, truncated group A SRCR domain; UGRP1, uteroglobin-related protein1; vWF, von Willebrand factor.
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mice, because these cells show impaired bacterial up-
take (Platt et al., 1999). SR-A-deficient mice were also
found to be more susceptible to in vivo infection by L.
monocytogenes and the herpes simplex virus type 1 (Su-
zuki et al., 1997). These mice also show reduced forma-
tion of granulomas after challenge with Corynebacte-
rium parvum (Hagiwara et al., 1999). This provides
proof of the protective role of SR-A in vivo, as well as
evidence of interaction between SR-A and viruses. In-
deed, a recent study has proposed SR-AI/II as a receptor
for double-stranded RNA of viral origin, working in co-
operation with other established double-stranded RNA
receptors such as Toll-like receptor (TLR) 3 (DeWitte-
Orr et al., 2010).

It is generally believed that the SRCR domain of
SR-AI is not involved in bacteria binding; this belief
arises from the observation that SR-AII, which lacks the
SRCR domain, is still able to bind modified LDL and
other such ligands (Rohrer et al., 1990). However, the
fact that the collagen-like domain of this protein is es-
sential for bacteria binding does not mean that the
SRCR domain of SR-AI is not able to bind bacteria as
well; the SRCR domain could thus represent a redun-
dant binding site for bacteria, a possibility yet to be
explored.

Resistance to infection promoted by SR-AI/II appears
to be mediated by enhanced bacterial ingestion or kill-
ing, which result in clearance from the circulation

TABLE 2
Group B SRCR proteins

Proteins described in mammals, unless indicated otherwise.

Name No. SRCR Other Domains Expression Function Form References

CD5 3 Thymocytes, T and B1a
lymphocytes; mammals
and Gallus gallus
(chicken)

Modulation of TCR and BCR
signaling

M, S Jones et al., 1986

CD6 3 Thymocytes, T and B1a
lymphocytes, neurons;
mammals and G.
gallus (chicken)

Modulation of TCR signaling;
binding to ALCAM/CD166

M, S Aruffo et al., 1997

T19/WC1 11 T�� lymphocytes Reversible G0/G1 cell cycle
arrest

M Wijngaard et al.,
1992

M130/CD163 9 Macrophages Haptoglobin-hemoglobin
receptor; role in
inflammation; binding to
bacteria

M, S Law et al., 1993

M160 12 Macrophages Role in inflammation M Gronlund et al., 2000
DMBT1/gp340/

SAG/Hensin/
Ebnerin/
CRP-ductin/
BGM/H3

4–14 CUB, ZP Intestinal epithelium,
kidney, lung, liver,
stomach, pancreas,
prostate, von Ebner’s
gland, brain, heart

Epithelial differentiation and
polarization; binding to
galectin-3; binding to SP-D
and SP-A; binding to
bilirubin and cholesterol;
binding to bacteria, fungi,
and gp120 from HIV-1;
suppression of infection
and inflammation

M, S Li and Snyder, 1995;
Nunes et al., 1995;
Cheng et al., 1996;
Takito et al., 1996;
Mollenhauer et al.,
1997

Pema-SREG 2 Petromyzon marinus (sea
lamprey) intestine

Unknown M Mayer and Tichy,
1995

Sp�/AIM 3 Tissue macrophages Apoptosis inhibitory factor;
binding to PAMPs from
bacteria and fungi;
adipocyte lipolysis

S Gebe et al., 1997;
Miyazaki et al.,
1999

18-B 4 Unknown; described in G.
gallus

APR S Iwasaki et al., 2001

SCART1/2 8 T�� lymphocytes, lymph
node, trachea, lung,
and low expression in
thymus, spleen, skin,
and tissues throughout
the gastrointestinal
tract.

Role in inflammation and T
cell development

M, S Kisielow et al., 2008;
Holm et al., 2009

S4D-SRCRB 4 Heart, liver, brain, PBL,
spleen, intestine,
kidney, and placenta

Unknown S Padilla et al., 2000

S5D-SRCRB/SSc5D 5 Syndecan domain Genitourinary and
digestive tracts

Binding to PAMPs from
bacteria and fungi, and to
ECM and Galectin-3

S Gonçalves et al.,
2009; Miró-Julià et
al., 2011

MAP_GEOCY 1 Fibronectin, SCR Extracellular matrix of G.
cydonium (marine
sponge)

Multiadhesive protein S Pahler et al., 1998

PSLAP 2 LCCL, PLAT Plasmodium falciparum
(parasite) gametocytes

Mosquito and/or vertebrate
immune response evasion

S Delrieu et al., 2002

APR, acute phase reactant; BCR, B-cell receptor; EGF, epidermal growth factor; LCCL, Limulus factor C, Coch-5b2, and Lgl1 domain; M, membrane; PBL, peripheral
blood leukocytes; PLAT, polycistin-1, lipoxygenase, and �-toxin domain; S, secreted; SCR, short consensus repeat.
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(Thomas et al., 2000; Arredouani et al., 2006; Plüdde-
mann et al., 2009a). SR-AI/II can also be protective in
mice suffering from bacterial endotoxin-mediated septic
shock. Indeed, SR-A(�/�) mice were more likely to sur-
vive LPS-induced shock after infection with bacillus
Calmette-Guerin, and showed decreased production of
proinflammatory cytokines such as IL-1�, TNF�, and
IL-6 compared with SR-A(�/�) (Haworth et al., 1997).
In this case, protection from LPS-induced shock is prob-
ably a result of endotoxin sequestration and removal
from circulation by SR-AI/II. However, opposite results
were found when using another model of LPS-mediated
septic shock, SR-A(�/�) mice showing higher resistance
to LPS treatment (Kobayashi et al., 2000). Although the
different models of endotoxic shock used could explain
the discrepancy in the results, more research is needed
to clarify the role of SR-A in bacterial endotoxin-medi-
ated septic shock.

The presence of T cells—mostly CD4�—in atheroscle-
rotic lesions has been reported. Moreover, some of these
T cells proliferate and secrete cytokines in the presence
of oxidized LDL, which might indicate recognition of this
molecule (Palinski et al., 1995, 1996; Stemme et al.,
1995; Daugherty and Rateri 2002). Alternatively, these

results might suggest that macrophages present in the
lesions are able to initiate an immune response against
the modified lipoproteins they phagocytize (for instance,
by releasing proinflammatory mediators). Indeed, SR-A
deletion has been reported to increase alveolar macro-
phage expression of inducible nitric-oxide synthase and
oxidative stress of lung cells in hyperoxia-induced lung
injury (Kobayashi et al., 2007). It has also been shown
that spleen cells from SR-A(�/�) mice immunized with
a modified protein are unable to proliferate in response
to antigen, in contrast with wild-type mice treated in the
same way (Nicoletti et al., 1999). Furthermore, modifi-
cation of proteins by maleylation or glycation to make
them SR ligands enhanced their immunogenicity in
vitro and in vivo, increasing T-cell activation and prolif-
eration and also generating an antibody response (Abra-
ham et al., 1995; Ilchmann et al., 2010). This effect could
be explained by SR-AI/II-enhanced antigen presenta-
tion. Indeed, dendritic cells, which also express SR-AI/II,
can take up membrane antigens directly from either
dying or healthy cells by a process called nibbling and
present them to cytotoxic T lymphocytes via major his-
tocompatibility complex class I (Harshyne et al., 2001).
A later study showed that capture of membrane antigen
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FIG. 1. Human group A SRCR members. BTB/POZ, D. melanogaster kelch protein dimerization domain; CUB, C1r/C1s Uegf Bmp1 domain;
FIMAC, factor I membrane attack complex; IVR, intervening region from D. melanogaster kelch protein; LDL-R, low density lipoprotein receptor; LOX,
lysil oxidase; MAM, domain homologous to members of a family defined by motifs in the mammalian metalloprotease meprin, the X. laevis neuronal
protein A5, and the protein tyrosine phosphatase �; SEA, domain found in sea urchin sperm protein, enterokinase, and agrin.
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by dendritic cells was blocked by an anti-SR-AI/II anti-
body (Harshyne et al., 2003). SR-A was also shown to
participate in the binding, internalization, and presen-
tation of antigen to cytotoxic T lymphocytes. All to-
gether, these results implicate SR-AI/II in the modula-
tion of the immune response. Moreover, they imply that
SR-AI/II could be involved in the development of auto-
immunity. Indeed, it has been shown that induction of
arthritis in SR-A-deficient mice resulted in decreased
severity of disease compared with wild-type mice (van
Lent et al., 2009).

Despite all these data, an anti-inflammatory role has
also been proposed for SR-AI/II. Mice deficient in SR-
AI/II exhibited increased morbidity and mortality after
experimental myocardial infarction, showing impaired
remodelling of infarcted tissue and deregulated cytokine
production (Tsujita et al., 2007). Moreover, mice defi-
cient in SR-AI/II were resistant to diabetic nephropathy
as a result of reduced inflammation of renal tissue (Usui
et al., 2007). However, SR-AI/II-deficient mice also ex-
hibited slower tumor growth, presumably as a conse-
quence of enhanced antitumor activity of macrophages
as a result of increased NO synthase and IFN� expres-
sion (Komohara et al., 2009). This suggests that modu-
lation of the immune response by SR-AI/II is complex
and can vary in different pathogenic situations.

C. Diagnostic and Therapeutic Potential

Although the exact contribution of SR-AI/II to the
pathogenesis of atherosclerosis needs further study, ac-

cumulating evidence indicates that this receptor facili-
tates the formation of atherosclerotic lesions by macro-
phages. Indeed, measuring RNA and/or protein levels of
SR-AI/II in macrophages is of diagnostic utility in pa-
tients suffering of normolipidemic planar xanthomatosis
(Giry et al., 1996). From the therapeutic point of view,
blocking SR-AI/II function would be expected to decrease
the size and number of these lesions. Indeed, treatment
of mice with a soluble decoy form of SR-AI/II delivered
by adenoviral transduction resulted in decreased degra-
dation of modified lipoproteins and reduced formation of
foam cells in vitro (Laukkanen et al., 2000; Jalkanen et
al., 2003b). Moreover, treatment of atherosusceptible
LDLR(�/�) mice with a soluble decoy form of SR-AI/II
significantly reduced the atheroma area in the aorta
(Jalkanen et al., 2003a,b). These preliminary studies
suggest that soluble SR-AI/II could be used in the pre-
vention and treatment of atherosclerosis.

Further perspectives are that preventive treatment
with SR-AI/II soluble forms could also reduce the devel-
opment of autoimmune responses and excessive inflam-
mation. As shown by preliminary studies in mice, ad-
ministration of a soluble form of SR-AI/II could improve
recovery after infarction and other tissue injuries (Jal-
kanen et al., 2003a; Jalkanen et al., 2003b). On the basis
of the role of SR-AI/II in particulate removal, it can be
envisioned that a soluble form of this protein that could
be administered to the lungs may reduce pulmonary
inflammation, thus preventing later events such as the
development of fibrosis or malignancies. This would be
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FIG. 2. Human group B SRCR members. CUB, C1r/C1s Uegf Bmp1 domain; PST, proline-, serine-, and threonine-rich sequence; ZP, zona pellucida
domain.
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important in the prevention of pathologic lung condi-
tions in persons exposed to silica or asbestos, whether by
occupational hazard or otherwise. However, it should be
noted that in some cases, this might be detrimental, in
that the impaired clearance of inhaled particles by SR-
A-mediate phagocytosis might have the opposite effect,
increasing pulmonary inflammation. Evidence seems to
suggest that the pro- or anti-inflammatory effect of SR-A
depends on the type of particle involved (Arredouani et
a., 2007; Thakur et al., 2008), which should be taken into
account when developing this strategy.

More recently, SR-AI/II expression has been detected
in vascular leukocytes, a type of leukocyte that promotes
immunosuppression and angiogenesis and facilitates
metastasis, and thus seems critical for tumor progres-
sion (Bak et al., 2007). It is noteworthy that treatment of
ovarian tumors with a toxin-conjugated anti SR-A anti-
body resulted in reduced tumor burden, suggesting that
SR-AI/II is a novel and useful target for the immuno-
therapeutic treatment of cancer.

IV. MARCO: A Macrophage Surface Receptor
with Collagenous Structure

MARCO (from Macrophage Receptor with Collage-
nous structure) is a membrane-bound type II glycopro-
tein that exists as a trimer in its native form (Elomaa et
al., 1995). This protein consists of five regions, an N-ter-
minal short cytoplasmic tail, a transmembrane region, a
spacer domain, a type XIII collagen-like region involved
in protein trimerization (Kraal et al., 2000), and a C-ter-
minal group A-type SRCR domain that displays high
similarity with that of SR-AI/II (Elomaa et al., 1995).
Indeed, these proteins share a high level of homology in
their structure, expression pattern and binding proper-
ties. However, the extracellular region of MARCO is
longer and its collagenous domain uninterrupted by long
noncollagenous structures (Kraal et al., 2000).

Expression of MARCO in murine tissue is localized to
macrophages from the interface between the red and the
white pulp of the spleen, known as marginal zone mac-
rophages, and also from the medullary region of the
lymph nodes (Elomaa et al., 1995). It is noteworthy that
macrophage-rich tissues such as lung and liver showed
no staining for MARCO, although a later study did find
expression of this protein in alveolar macrophages (Pale-
canda et al., 1999). However, exposure of mice to bacillus
Calmette-Guerin, LPS, or bacterial sepsis rapidly up-
regulated expression of MARCO in tissue macrophages,
including dendritic cells (Granucci et al., 2003) and
Kupffer cells of the liver (van der Laan et al., 1999). It is
noteworthy that studies on MARCO expression in hu-
man tissue showed distribution of this receptor in mac-
rophages from several types of tissues (Elomaa et al.,
1998). It should be noted, however, that experiments
were carried out on tissue from septic patients; given the
fact that murine MARCO expression extends to tissue

macrophages outside spleen and lymph nodes after in-
fection or inflammatory stimuli, further studies on sam-
ples from healthy patients are needed.

MARCO-transfected Chinese hamster ovary cells
were found to bind modified LDL but not Ficoll, a poly-
saccharide taken up by most marginal zone macro-
phages (Elomaa et al., 1995). Binding of MARCO to
modified LDL was shown to be mediated by the SRCR
domain (Chen et al., 2006). MARCO was also found to
bind directly to E. coli and S. aureus, but not to yeast: all
these interactions were inhibited by poly-G, a polyan-
ionic inhibitor of scavenger receptor binding (Elomaa et
al., 1995). Experiments with a recombinant form of
MARCO consisting solely of the extracellular region
showed that this receptor also binds to LPS (Sankala et
al., 2002). MARCO also seems to mediate the scavenging
of unopsonized particles, such as TiO2, Fe2O3, and latex
beads, by alveolar macrophages (Palecanda et al., 1999;
Arredouani et al., 2005); this receptor was later shown to
bind crystalline silica (CSiO2), which is responsible for
silicosis (Thakur et al., 2009a,b). Binding was mapped to
an acidic cluster at the long loop region covering the
�-helix of the SRCR domain, in contrast with the site
responsible for pathogen binding, which resides in a
basic amino acid cluster on the �-sheet region of the
SRCR domain (Ojala et al., 2007). All together, these
data point to a role for MARCO in the clearance of
inhaled particles in the lung. It could be speculated that
exposure to noxious particles such as CSiO2 in the air
would up-regulate the expression of MARCO in line with
what happens in response to pathogens, but this re-
mains to be proven.

Circulating apoptotic cells are trapped in vivo in the
marginal zone of the spleen, where they bind to macro-
phages present in that region (Wermeling et al., 2007);
these macrophages express high levels of SR-AI/II and
MARCO. MARCO was shown to actively bind apoptotic
cells and thus participate in their clearance. Removal of
apoptotic cells from this area is of prime importance
because they are a source of autoantigens that can acti-
vate marginal zone B cells and thus induce autoantibody
production (Enzler et al., 2006; Mandik-Nayak et al.,
2006). Indeed, defective removal of apoptotic cells has
been associated with increased susceptibility to autoim-
mune disorders such as systemic lupus erythematosus
(SLE) (Casciola-Rosen et al., 1994; Kim et al., 2003),
which is characterized by the presence of anti-DNA an-
tibodies. It is remarkable that MARCO-deficient mice
were found to have increased levels of anti-DNA anti-
bodies in response to in vivo injection of apoptotic cells
(Wermeling et al., 2007). In SR-AI/II and MARCO dou-
ble knockout mice, this increase was independent of
apoptotic cell injection, suggesting the development of
spontaneous autoimmunity. It is noteworthy that anti-
MARCO antibodies were detected in a transgenic mouse
model of SLE; these antibodies were present at very
early stages, before the onset of the disease. Moreover,
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MARCO expression was shown to be down-regulated in
spleen macrophages in a transgenic mouse model of SLE
(Rogers et al., 2009). Macrophages derived from these
mice also showed impaired ability to take up apoptotic
cells, a consequence of an overall decrease in their
phagocytic activity. It is noteworthy that MARCO read-
ily binds LDL, and impairment of this activity could
explain the increased risk of cardiovascular disease in
SLE patients.

Activated macrophages undergo changes in their cy-
toskeleton that are probably related to the acquisition of
phagocytic properties. It is noteworthy that transfection
of MARCO in resting dendritic cells was sufficient to
induce rearrangements of the cytoskeleton similar to
those seen in mature, activated cells (Granucci et al.,
2003). Conversely, depletion of MARCO from dendritic
cells prevented the acquisition of maturation-related
changes by these cells. This suggests that MARCO is
more than a pattern recognition receptor and is indeed
able to modulate maturation of macrophages and den-
dritic cells.

A. Role in Pathogen Recognition and Phagocytosis

The presence of MARCO in the marginal zone of the
spleen and in the cortical region of lymph nodes means
that this receptor is in a key position to interact with
blood-borne pathogens. Moreover, MARCO expression is
up-regulated after inflammatory stimuli and extends to
tissue macrophages. All together, these data suggest
that MARCO is involved in the response to pathogens.
Indeed, in vitro experiments showed the ability of
MARCO to bind directly to bacteria (Elomaa et al., 1995)
and to LPS (Sankala et al., 2002). In contrast with
SR-AI/II, bacteria-binding has been mapped to an argi-
nine-based motif (R-X-R) within the SRCR domain (Elo-
maa et al., 1998; Brännström et al., 2002). Furthermore,
a form lacking most of the collagenous domain but con-
taining enough of it to be able to trimerize was still able
to bind efficiently to bacteria. However, another study
showed that a recombinant form of MARCO consisting
only of the SRCR domain had very low, barely detectable
bacteria-binding activity (Sankala et al., 2002). Consid-
ering that previous work has shown that the collagenous
structure of MARCO has no direct binding activity and
does not seem to promote or enhance binding, it is very
likely that the SRCR domain needs to be in trimeric
form to interact correctly with bacteria. This would pro-
vide an excellent means to create selectivity for patterns
with a specific spatial organization.

The importance of MARCO activity was shown when
the uptake of bacteria by the spleen was found to be
decreased in mice treated in vivo with anti-MARCO
antibodies shown to block ligand binding (van der Laan
et al., 1999). Bacterial clearance from the circulation
was not impaired in these mice, suggesting that other
receptors carry out this function. This confirms the role

of MARCO as a bacterial receptor in vivo, involved in the
binding and phagocytosis of pathogens.

Confirming its role in the defense against pathogens
and environmental particles, MARCO-deficient mice
show increased mortality in response to pneumococcal
pneumonia as a result of decreased bacteria clearance
from lungs and excessive pulmonary inflammation and
cytokine release (Arredouani et al., 2004). Similar ef-
fects were observed in response to inert particle inhala-
tion. This suggests that MARCO is able to prevent lung
inflammation by pathogens and inhaled particles by en-
hancing their clearance. However, the role of MARCO is
not limited to pathogen uptake. A recent report shows
that MARCO-deficient mice exhibit comparable uptake
of inhaled antigen but have increased numbers of den-
dritic cells migrating from the lung into the lymph nodes
(Arredouani et al., 2007). This suggests that MARCO
has a broader anti-inflammatory effect in the lungs that
is not limited to the removal of inhaled particles.

The binding of MARCO to pathogens is not exclusive
of bacteria: infection of macrophages with intracellular
parasite Leishmania major was shown to depend on
MARCO expression (Gomes et al., 2009), whereas treat-
ment with anti-MARCO antibodies reduced infection
with L. major both in vitro and in vivo. This suggests
that MARCO may facilitate infection by serving as a
receptor for parasites.

B. Diagnostic and Therapeutic Potential

As previously explained, anti-MARCO antibodies can
be detected in the early stages of a murine model of SLE,
before the full onset of the disease (Wermeling et al.,
2007). Patients with SLE were also found to have ele-
vated titers of anti-MARCO antibodies compared with
healthy control subjects in the same study. However, it
remains to be determined whether these antibodies can
be detected before the onset of the disease, in which case
they would constitute a valuable marker for diagnosis to
potentially initiate early treatment. MARCO gene ex-
pression in lymphoma tissue was also found to correlate
with better prognosis and response to rituximab plus
CHOP chemotherapy (cyclophosphamide, doxorubicin,
vincristine, prednisone) in follicular lymphoma (Harjun-
pää et al., 2006), thus acting as a prognostic and therapy-
response marker.

A subpopulation of immunosuppressive macrophages
that express MARCO, as well as immunosuppressive
genes such as arginase and IL-10, has been identified
(Qian and Pollard, 2010). Although the precise role of
MARCO in this subpopulation is still unknown, antibod-
ies against this receptor could be used to target immu-
nosuppressive macrophages and improve immune re-
sponse against tumors.

In addition, soluble forms of MARCO could be used
in a way similar to those of SR-AI/II, to prevent ex-
cessive inflammatory response and to enhance patho-
gen and/or particle clearing, for example, from the
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lung. In this case, it should be noted that the soluble
form should contain enough of the collagenous region
to be able to oligomerize and therefore display its full
binding ability. In fact, the same approach—in addi-
tion to inhibiting MARCO via antibodies— can be
imagined to find application for suppression of L. ma-
jor infection.

V. Mac-2 Binding Protein: a
Tumor-Associated Antigen

Mac-2-binding protein (Mac-2BP) is a large secreted
oligomeric protein that binds to galectin-3 (also named
Mac-2) and that was originally described as a tumor-
associated antigen (Natali et al., 1982; Iacobelli et al.,
1986; Linsley et al., 1986). Each subunit of approxi-
mately 90 kDa possesses four distinct domains: an N-
terminal group A SRCR domain; a putative member of
the BTB/POZ (broad complex, tramtrack and bric-a-
brac/poxvirus and zinc finger) dimerization domains; an
IVR (intervening region) related to the kelch protein
from D. melanogaster (Robinson and Cooley 1997; Mül-
ler et al., 1999); and a C-terminal region with no simi-
larity to any other known protein (Müller et al., 1999).
The BTB/POZ and IVR domains are responsible for pro-
tein oligomerization, as determined by studies with re-
combinant truncated protein forms (Hellstern et al.,
2002). The protein can be found only in monomeric form
under strongly denaturing conditions. In physiological
conditions, the protein forms ring-shaped oligomers vis-
ible by electron microscopy (Sasaki et al., 1998); linear
aggregates and ring-ring association are also observed.
These multivalent forms of the protein could enhance
interaction with multiple targets.

Mac-2BP was soon reported as a protein associated
with cyclophilin C, a member of the family of cyclophi-
lins, which bind to the immunosuppressive drug cyclo-
sporin A (Friedman et al., 1993). The two proteins are
found associated in the surface of viable cells in the
absence of CsA, suggesting that cyclophilin C could be
important for proper folding/processing of Mac-2BP.
Mac-2BP was also found to bind to extracellular matrix
proteins such as laminin; collagens IV, V, and VI; fi-
bronectin; and nidogen, as well as to integrin �1 sub-
units (Sasaki et al., 1998). The presence of this protein
can indeed be detected bound to the extracellular matrix
of a number of different types of tissue, such as testis,
thymus, lung, gastrointestinal tract, spleen, and skele-
tal muscle. Mac-2BP is also present in serum as well as
in other secretions such as breast milk and saliva (Ull-
rich et al., 1994; D’Ostilio et al., 1996; Sasaki et al.,
1998), although the cell type(s) responsible for secretion
has not yet been identified. The high levels of glycosyl-
ation found in Mac-2BP make this protein a possible
ligand for lectins. Indeed, carbohydrate-mediated inter-
actions with galectin-3 (also termed Mac-2) (Rosenberg
et al., 1991; Koths et al., 1993; Inohara and Raz, 1994)

and galectin-1 (Tinari et al., 2001) have been reported.
Mac-2BP is also able to induce homotypic cell aggrega-
tion in a melanoma cell line expressing galectin-3 (Ino-
hara et al., 1996). Supporting this notion, galectin-1 was
shown to induce Mac-2BP-mediated aggregation of a
melanoma cell line. These results implicate Mac-2BP in
homotypic cell adhesion, suggesting that it could play a
role in tumor embolization during metastasis. Overex-
pression of Mac-2BP in vitro led to increased adhesive-
ness of lung cancer cell lines to extracellular matrix
proteins (Ozaki et al., 2004a), consistent with previous
in vitro binding results, prompting the authors to spec-
ulate a possible role for Mac-2BP in metastasis. In-
creased levels of Mac-2BP were also found in cells after
exposure to proinflammatory cytokines involved in the
protective immune response against tumors.

A possible modulating role for Mac-2BP in the innate
and adaptive immune responses is supported by the
expression of this protein in lymphoid organs such as
thymus and spleen, together with its reported involve-
ment in homotypic cell-cell interactions and the impli-
cation of the SRCR domain in innate and adaptive im-
mune response modulation; it should be noted, however,
that the contribution of the SRCR domain to the func-
tion of this protein remains unknown. Exposure of pe-
ripheral blood mononuclear cells (PBMCs) to Mac-2BP
in vitro was shown to generate cytotoxic effector NK and
lymphokine-activated killer cells (Ullrich et al., 1994);
PBMCs also increased their secretion of IL-1, IL-2, IL-6,
granulocyte macrophage–colony-stimulating factor, and
TNF� after incubation with Mac-2BP in combination
with suboptimal doses of concanavalin A (Powell et al.,
1995). Increased levels of Mac-2BP were also able to
induce cytokine production in accessory cells, particu-
larly monocytes (Powell et al., 1995; Lee et al., 2005),
and to generally enhance immune response mediated by
cytotoxic CD8� T cells or NK/NK T cells to tumor chal-
lenge. Potential for modulating the immune response
was also demonstrated for Mac-2BP when it was shown
that exposure to this protein altered T-cell proliferation
after stimulation with nonspecific mitogens such as phy-
tohemagglutinin and concanavalin A as well as TCR
agonists such as superantigens and allogeneic cells (Sil-
vestri et al., 1998). Finally, exposure to Mac-2BP caused
breast cancer cells to directly increase their expression
of class I major histocompatibility complex (Natoli et al.,
1996), thereby augmenting their immunogenicity; simi-
lar results were obtained by transfection of thyrocytes
(Grassadonia et al., 2004).

A. Therapeutic and Diagnostic Potential

Mac-2BP was originally discovered as a tumor-associ-
ated antigen, so it is not surprising that its major clinical
use is as a tumor biomarker. As early as the mid 80s, the
levels of this protein were found to be increased in pa-
tients with cancer, especially in those suffering from
breast cancer, compared with healthy subjects (Iacobelli
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et al., 1986). Elevated levels of Mac-2BP were found in
all histological types of breast cancer and titers were
significantly higher in sera from advanced-stage pa-
tients than in those with limited disease (Iacobelli et al.,
1988). In the case of ovarian cancer, however, the per-
centage of Mac-2BP positivity did not correlate with
histological type or disease stage (Scambia et al., 1988).
It is noteworthy that increased levels of Mac-2BP pre-
ceded clinical symptoms and signals of recurrence.
These results were also shown for breast cancer, where
Mac-2BP levels were associated with poor prognosis,
presence of metastasis in liver, and shorter disease-free
interval (Iacobelli et al., 1994). Elevated levels of this
protein have also been shown in lung carcinoma (Ozaki
et al., 2002), correlating strongly with clinical staging
(Ozaki et al., 2004a).

Progression from chronic hepatitis to cirrhosis to hep-
atocellular carcinoma (HCC) can also be monitored by
measuring serum Mac-2BP levels (Correale et al., 1999);
moreover, negative staining for Mac-2BP in liver tissue
was associated with poor prognosis (Valentini et al.,
2005). These results were confirmed by later work show-
ing that Mac-2BP serum levels significantly correlated
with overall survival of HCC patients under 70 years of
age (Iacovazzi et al., 2001). In this case, determination of
Mac-2BP and �-fetoprotein—the reference marker for
HCC—together was better correlated to prognosis than
AFP determination alone. The combined determination
of both markers has been proposed as a standard diag-
nosis tool for HCC (Iacovazzi et al., 2003). A similar
picture has been described for biliary tract carcinoma,
where determination of biliary levels of the reference
marker, CA19-9, and Mac-2BP improved the diagnostic
efficiency, providing a useful tool for differential diagno-
sis from non-neoplastic biliary diseases such as benign
biliary conditions and primary sclerosing cholangitis
(Koopmann et al., 2004).

Further uses of Mac-2BP in the diagnosis, prognosis,
and prediction of response to treatment have been found
for non-Hodgkin’s lymphoma (Zhang et al., 2003), gas-
tric cancer (Park et al., 2007), prostate cancer (Sardana
et al., 2007), pancreatic cancer (Xue et al., 2008), colo-
rectal cancer (Iacovazzi et al., 2010), and neuroendocrine
tumors (Srirajaskanthan et al., 2010).

Serum levels of Mac-2BP not only allow for the fol-
low-up of cancer patients but have also been shown to be
a predictor of disease severity in patients infected with
hepatitis C (Kittl et al., 2000). Mac-2BP can also be used
as a predictor of the response of the hepatitis C virus to
interferon alone and in combined therapy (Iacovazzi et
al., 2008). This protein therefore displays multiple ad-
vantages for its use not only in diagnosis but also in viral
disease patient follow-up.

The presence of Mac-2BP in cancer cells could allow
for this protein to be used as a target in immunotherapy.
Indeed, cytotoxic T lymphocytes can be activated by
pulsing with peptides derived from Mac-2BP loaded onto

antigen-presenting cells (Ozaki et al., 2004b). Thus, im-
munotherapy with Mac-2BP peptide-pulsed cytotoxic T
lymphocytes could become an attractive alternative in
the treatment of certain cancers. Alternatively, ex vivo
treatment of either PBMC or tumor cells with Mac-2BP
seems to potentiate antitumoral immune responses, by
increasing both innate (Ullrich et al., 1994; Powell et al.,
1995; Lee et al., 2005) and adaptive (Silvestri et al.,
1998) cytotoxic activity and tumor immunogenicity
(Natoli et al., 1996).

It is noteworthy that the levels of Mac-2BP in milk
were revealed to correlate inversely with acute respira-
tory infections in children under 12 months fed with
human milk (Fornarini et al., 1999). Authors speculate
that this could be a result of direct neutralizing interac-
tion of milk Mac-2BP with microorganisms or could oc-
cur through stimulation of the infant immune system
mediated by this protein. Whichever the mechanism is,
these data suggest that supplementation of milk or feed-
ing with Mac-2BP could protect children from infection
in a similar way to that proposed for lactoferrin (Sher-
man, 2010); however, no evidence currently supports
this contention, and more research is needed before such
an approach might be considered.

VI. SCARA5: A Newcomer into the Family

A recently discovered member of the SRCR superfam-
ily is SCARA5, a type II transmembrane glycoprotein
with high homology to SR-AI/II (Jiang et al., 2006).
Similar to SR-AI/II and MARCO, this protein contains a
short N-terminal domain, a transmembrane domain, a
spacer region, a collagenous domain, and a type A SRCR
domain at the C terminus. The collagenous region seems
to be determinant in the formation of protein trimers,
much as it is in SR-AI/II and MARCO. Analysis of the
protein sequence identified seven putative N-glycosyla-
tion sites, suggesting that this protein is heavily glyco-
sylated. The cytoplasmic domain contains Ser and Thr
residues that are potential phosphorylation sites for ca-
sein kinase II and protein kinase C (PKC). This protein
is expressed at the cytoplasmic membrane, although
immunofluorescence studies have suggested that this
protein may be present in the endoplasmic reticulum
and Golgi, which is to be expected for a membrane-
bound protein.

In stark contrast with other group A SRCR members,
expression of SCARA5 was not detected in macrophage
cell lines; real-time PCR analysis, however, did detect
expression of SCARA5 mRNA in testis, bladder, trachea,
adrenal gland, skin, lung, and ovary. These results were
confirmed by in situ hybridization, which showed that
the highest levels of SCARA5 were present in the testis,
particularly in Sertoli cells. These results were con-
firmed by a later study that also showed expression of
SCARA5 in gonadal epithelia, the airway, kidney cells,
developing aorta, and muscle bundles (Li et al., 2009).
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SCARA5 expression has also been found at alveolar
epithelial cells and in the lung cell line A549, although
not at bronchial epithelial cells or lung macrophages
(Leino et al., 2010). The expression pattern of SCARA5,
not in macrophages but pre-eminently epithelial, has
prompted researchers to postulate a role for this recep-
tor in epithelial homeostasis. It is noteworthy that the
authors also reported that SCARA5 expression was in-
creased in peripheral lung extracts after a 24-h incuba-
tion with LPS.

A significant difference with SR-AI/II is that SCARA5
does not seem to bind or take up acetylated or oxidized
LDL (Jiang et al., 2006). This protein does, however,
bind to E, coli and S, aureus, although not to zymosan, in
a polyanionic-inhibitable manner (Jiang et al., 2006).

A. Role as a Nontransferrin Iron Delivery Receptor

A recently defined role for SCARA5 was discovered in
renal cells from transferrin receptor-1 knockout mice:
these cells were not deficient in iron; indeed, they
showed high levels of iron in their cytoplasms, stored as
ferritin deposits. The cells did not take up transferrin,
discarding the existence of an alternative transferrin
receptor, but were shown to take up ferritin through
SCARA5, thus revealing a new role for this protein as a
ferritin receptor in both embryonic and adult renal cells
(Li et al., 2009). SCARA5 bound preferentially to L-fer-
ritin and also to apo-ferritin, but not to H-ferritin, dem-
onstrating specificity for the ferritin chain. It is notewor-
thy that SCARA5 also bound hemoglobin-haptoglobin
(Hb-Hp) complexes, albeit with less avidity. There is no
evidence that the SRCR complex mediates the binding of
Hb-Hp complexes, something that has been shown for
CD163 (see section VIII). Binding of ferritin seems to be
followed by endocytosis into an acidic compartment and
incorporation of iron into the cell, supporting cell sur-
vival. Polyanionic compounds inhibited the interaction
between SCARA5 and ferritin, suggesting that the bind-
ing is dependent on electrostatic forces; indeed, ferritin
contains repeating chains of polyanionic monomers.
Whether ferritin binds to other scavenger receptors or is
uniquely bound by SCARA5 is a pending issue.

B. Role in Tumor Suppression

Intriguingly, SCARA5 has also recently been reported to
act as a tumor suppressor in HCC (Huang et al., 2010).
SCARA5 seems to be silenced in HCC by promoter hyper-
methylation; moreover, down-regulation of SCARA5 ex-
pression correlates with cellular invasion, venous perme-
ation, and overall progression of HCC. Suppression of
SCARA5 expression was also found in other cancers as
well, such as gastric cancer, suggesting that the protective
effect of SCARA5 is not exclusive of HCC. The mechanisms
through which SCARA5 prevents tumor development are
multiple and involve decreases in cell proliferation, colony
formation, cell migration, and invasion, as shown for tu-
mor cell lines; these results were confirmed with in vivo

experiments demonstrating that SCARA5 overexpression
impairs tumorigenicity, decreases tumor growth, and in-
hibits metastasis. Knockdown of SCARA5 consistently
caused hepatic tumor cells to increase their anchorage-
independent growth, colony formation ability, and tumor-
igenesis in vivo. Overexpression of SCARA5 was found to
inhibit phosphorylation of focal adhesion kinase, whereas
SCARA5 knockdown readily activated the focal adhesion
kinase signaling cascade, including the downstream induc-
tion of matrix metalloproteinase-9, involved in tumor in-
vasion and metastasis. All together, SCARA5 seems to be
a multifaceted protein worthy of further investigation.

C. Therapeutic and Diagnostic Potential

Although SCARA5 was discovered very recently, it is
already possible to suggest a clinical application for this
protein as a biomarker of certain malignancies and also
as a prognosis-associated protein because of the appar-
ent correlation of SCARA5 expression levels with HCC
progression (Huang et al., 2010). Likewise, the ability of
SCARA5 to bind both bacteria and Hp-Hb complexes
paves the way for its putative use in post-transfusional
reactions and also in sepsis (see section VIII.C).

VII. CD5 and CD6: Innate and Adaptive
Lymphocyte Surface Receptors

CD5 and CD6 are type I lymphocyte membrane gly-
coproteins of 67 kDa and 105 to 130 kDa, respectively.
Their homology is important not only from a structural
point of view but also at the level of their expression
pattern and their functional properties. These proteins
are in fact encoded by contiguous genes located in the
same chromosomal region (chr11q22 in humans and
chr9 in mice), which probably derive from the duplica-
tion of a common ancestral gene (Lecomte et al., 1996;
Padilla et al., 2000). Both proteins possess an extracel-
lular region composed exclusively of three SRCR do-
mains in tandem, a transmembrane region, as well as an
intracytoplasmic region well adapted for intracellular
signal transduction (Sarrias et al., 2004a). Both CD5
and CD6 are expressed on thymocytes from early mat-
uration states, on mature T lymphocytes, and on the B1a
subpopulation (Kamoun et al., 1981). CD6 (but not CD5)
expression has also been reported in certain brain re-
gions (Mayer et al., 1990) and on NK cells (Zimmerman
et al., 2006).

CD5 and CD6 are physically associated to the antigen-
specific receptor present on T (TCR) and B1a (B-cell
receptor) cells (Beyers et al., 1992; Lankester et al.,
1994). In T cells, these two molecules are part of a
macromolecular complex integrated also by other co-
stimulatory molecules (CD2, CD4, CD8, CD45) (Carmo
et al., 1999). CD6 has been shown to physically and
independently associate to CD5 (Gimferrer et al., 2003)
and to TCR/CD3 (Gimferrer et al., 2004); reports also
described the colocalization of CD5 and CD6 with the
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TCR/CD3 complex in the central area of the mature
immune synapse (Brossard et al., 2003; Gimferrer et al.,
2004; Zimmerman et al., 2006). This indicates that both
receptors are well positioned to regulate activation or
cell death signals promoted by specific antigen recogni-
tion; indeed, both molecules, in soluble form, are able to
inhibit proliferative responses mediated by antibodies
(anti-CD3) or mitogenic lectins (phytohemagglutinin) in
T cells. It has also been shown that recombinant soluble
human CD6 (rshCD6) inhibits the maturation of the
immune synapse and the subsequent lymphocyte acti-
vation (Gimferrer et al., 2004; Hassan et al., 2004; Zim-
merman et al., 2006), indicating that CD5 and CD6
possess important immunoregulatory properties.

A. Role in Lymphocyte Differentiation and Activation

Expression of CD5 and CD6 is increased throughout
thymic differentiation (Azzam et al., 1998; Singer et al.,
2002) and lymphocyte activation (Carrera et al., 1989;
Cardenas et al., 1990; Lozano et al., 1990b) in a TCR-
regulated manner.

The first functional studies on these receptors were
carried out using specific anti-CD5/CD6 mAbs, and dem-
onstrated an important role for them in lymphocyte
activation, acting as costimulatory molecules (Ceuppens
and Baroja 1986; Gangemi et al., 1989; Alberola-Ila et
al., 1992; Bott et al., 1993). Later studies carried out in
CD5-deficient mice (Tarakhovsky et al., 1995; Bikah et
al., 1996), showed that this molecule behaves as a neg-
ative modulator of the activation and differentiation sig-
nals mediated by antigen-specific receptors, depending
on the cell type and on the cell maturation state (Lozano
et al., 2000). Thus, CD5 could behave as a costimulatory
molecule in mature T and B lymphocytes and as a neg-
ative signaling molecule in thymocytes and B1a lympho-
cytes. Expression of CD5 in thymocytes was shown to be
regulated by the affinity of the TCR in studies with
transgenic mice expressing high- and low-affinity TCRs
(Azzam et al., 1998). In this way, CD5 was shown to be
responsible for fine tuning of TCR signaling (Azzam et
al., 2001). A CD6 knockout mice has not yet been devel-
oped, so whether this molecule also possesses similar
dual modulating properties remains to be determined,
although some studies seem to indicate that this could
indeed be the case (Singer et al., 2002).

The intracellular regions of CD5 and CD6 lack intrin-
sic catalytic activity but possess a number of residues
that are susceptible to phosphorylation and to further
interaction with other cytoskeletal and signaling pro-
teins (Kobarg et al., 1997; Vilà et al., 2001). Both mole-
cules are constitutively phosphorylated, but lymphocyte
activation causes them to become hyperphosphorylated
(Cardenas et al., 1990; Lozano et al., 1990a). Although
the CD5 signaling pathway is not entirely understood,
CD5 cross-linking causes a rapid and transient release
of diacylglycerol followed by the activation of PKC and
an acid sphingomyelinase (Alberola-Ila et al., 1992; Si-

marro et al., 1999). Other elements further downstream
of the CD5 signaling pathway include calcium/calmodu-
lin-dependent kinase type IV (Gringhuis et al., 1997),
phosphatidylinositol 3-kinase, Vav, Rac1 (Gringhuis et
al., 1998), CKII (Raman and Kimberly, 1998), PKC-�,
mitogen-activated protein kinase kinase, and c-Jun
NH2-terminal kinase (Simarro et al., 1999). A number of
elements might also be recruited from other signaling
pathways during CD5 activation, such as AKT and p38.
With respect to CD6, it has been reported that crosslink-
ing of this molecule by antibodies or its physiological
ligand (CD166/ALCAM, for Activated Leukocyte Cell
Adhesion Molecule) activated components of the MAP
kinase pathway (extracellular signal-regulated kinase,
c-Jun NH2-terminal kinase, p38) as well as certain tran-
scription factors (activator protein-1, nuclear factor �B)
(Ibáñez et al., 2006).

It is well established that CD6 binds CD166/ALCAM,
an adhesion molecule from the Ig superfamily expressed
in activated lymphocytes, epithelial thymic cells, and
brain cells (Bowen et al., 1996). It has been reported that
the CD6 domain implicated in ligand interaction
(SRCR3) is deleted by alternative splicing mechanisms
during lymphocyte activation, constituting a possible
mechanism of negative regulation (Castro et al., 2007).
However, the possible existence of alternative ligands
for CD6 in nonhematopoietic cells has also been reported
(Wee et al., 1994; Joo et al., 2000; Saifullah et al., 2004);
these ligands are still awaiting characterization. With
respect to CD5, the situation is particularly controver-
sial, with several ligands reported: CD72 (Van de Velde
et al., 1991), gp35-40 (Biancone et al., 1996), gp150
(Calvo et al., 1999b), the framework region of IgVH
(Pospisil et al., 2000), and CD5 itself (Brown and Lacey,
2010). These ligands have been questioned because of
the inability of other groups to validate some of them
and also because these ligands would mainly explain
T-B or B-B interactions mediated by CD5 but not other
interactions such as T-monocytes/macrophages, T-den-
dritic cells, T-epithelial cells, T-stromal cells, etc. It is
noteworthy that CD5 expression is notably increased in
regulatory cell types such as Treg (CD4� CD5high
CD25high FoxP3�) (Fehérvári and Sakaguchi, 2004) or
regulatory B cells (CD19� CD1d� CD5�) (Yanaba et al.,
2008), as well as in CD4� T cells (Kassiotis et al., 2003),
CD8� T cells (Stamou et al., 2003), or B cells (Hippen et
al., 2000), which have been anergized by repeated anti-
genic stimulation (with either endogenous or exogenous
antigens). In fact, CD5 expression is necessary for B-cell
production of IL-10, an autocrine cytokine for B1a cells
(Gary-Gouy et al., 2002), which is a suppressant cyto-
kine for some T cells and macrophage subsets. Accord-
ingly, IL-10-producing B cells (also called B10 or regu-
latory B cells) play a relevant role in the control of
experimental autoimmune processes such as experimen-
tal autoimmune encephalitis (Matsushita et al., 2008),
collagen-induced arthritis (Mauri et al., 2003), inflam-
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matory bowel disease (Mizoguchi et al., 2002), or contact
hypersensitivity (Yanaba et al., 2008).

The presence of elevated levels of CD5 in regulatory T
cells suggests that CD5 might be necessary to regulate
the generation and/or function of these cells. In agree-
ment with this, it has been reported that knockout mice
for CD5 present an increased number of regulatory T
cells both in the thymus and in the periphery (Ordoñez-
Rueda et al., 2009), as well as enhanced suppressing
activity of these cells (Dasu et al., 2008) possibly as a
result of increased TCR signaling in the absence of neg-
ative regulation mediated by CD5. This could suggest a
role for CD5 in the development of tolerance, both to
self-antigens and to exogenous nonself antigens. To the
best of our knowledge, there are no data concerning the
relative expression of CD6 in regulatory or anergic cells.

B. Role in Pathogen Recognition

An interesting contribution to the molecular interac-
tions mediated by the extracellular regions of CD5 and
CD6 is the recent discovery of the ability of both mole-
cules to directly bind conserved PAMPs present in bac-
teria and fungi (Sarrias et al., 2007; Vera et al., 2009).
Thus, the extracellular region of CD6 (but not CD5)
interacts with LPS from Gram-negative bacteria and
with LTA and peptidoglycan from Gram-positive bacte-
ria. It is noteworthy that the affinity of the CD6-LPS
interaction (KD, 2.69 � 0.32 � 10�8 M) is equivalent to
that reported for CD14, the main known receptor for
LPS in mammalian myeloid cells. On the other hand,
the extracellular region of CD5 (but not CD6) inter-
acts with �-glucans from fungal walls, with an affinity
(KD, 3.7 � 0.2 nM) equivalent to that of Dectin-1, the
main known receptor for �-glucans in mammalian
cells. CD6, but not CD5, also showed the ability to
aggregate bacteria, a property shared with other
SRCR members such as Sp� and DMBT1, which could
have importance in preventing transversion of bacte-
ria through epithelial barriers and in facilitating their
clearing from circulation.

Another relevant result from these studies is that the
interaction of these microbial structures also occurs with
membrane-bound forms of CD5 and CD6 inducing the
activation of intracellular signaling pathways and allow-
ing lymphocytes to detect the presence of an ample spec-
ter of pathogens. These data are in agreement with
recent evidence demonstrating that lymphocytes pos-
sess PRRs (for example, TLRs) and that specific recog-
nition of antigens (through TCR or B-cell receptors) in
the presence of microbial ligands of these PRRs has
important consequences for the expansion and function
of different T and B cell types, with effector as well as
regulatory function (Netea et al., 2004; Caron et al.,
2005; Liu et al., 2006; Lampropoulou et al., 2008;
Yanaba et al., 2009). It remains to be determined
whether the binding of microbial products to coreceptors
such as CD5 and/or CD6 contributes to the modulation

of adaptative immune responses mediated by PRRs—as
occurs with TLR ligands.

C. Therapeutic Potential in the Control of Sepsis
and Tolerance

The practical relevance of the pathogen-binding abil-
ity of CD5 and CD6 is illustrated by the fact that infu-
sion of recombinant soluble human forms of CD5
(rshCD5) and CD6 (rshCD6) have notable beneficial ef-
fects (increase in survival, reduction in proinflammatory
cytokine levels) in murine models of septic shock in-
duced by zymosan and LPS, respectively (Sarrias et al.,
2007; Vera et al., 2009), opening the door to a possible
prophylactic or therapeutic use in human sepsis. As of
1998, septic shock was the tenth leading cause of death
in Western countries and one of the main causes of death
in intensive care units (Friedman et al., 1998). Because
patients obtain little or no benefit from antibiotics or any
other standard therapy, mortality rates currently range
from 30 to 50% (Vincent et al., 2006). Infusion of recom-
binant soluble forms of CD5 and CD6 could then repre-
sent a valid therapeutic choice that could significantly
improve survival of patients with septic shock.

Circulating soluble forms of CD5 and CD6 in human
serum have been reported, albeit in small amounts (in
the picomolar range), similar to what happens with
other lymphocyte surface molecules; these seem to be
released during the late phases of lymphocyte activation
(Calvo et al., 1999a; Ramos-Casals et al., 2001), which
could indicate the existence of a physiological immune
response down-regulation mechanism. If confirmed, this
finding would have important implications, including
therapeutic ones, in autoimmune diseases that present
lymphocyte hyperactivation. Although these soluble
forms can be found in the serum of healthy persons,
their levels are increased in patients suffering from
pathological processes implicating lymphocyte hyper-re-
activity/hyperactivation, such as primary Sjögren syn-
drome (Ramos-Casals et al., 2001) and in MRL-Ipr/Ipr
mice (M. Ramos-Casals, unpublished data). Although
the biological role of the soluble forms is largely un-
known, it has been proposed that they could mediate
negative feedback mechanisms to inhibit the inflamma-
tory response, because they are able to interact with
ligands located at a distance and to block the cell-cell
contacts necessary to maintain such responses. Evi-
dence for this is the demonstration that infusion of a
chimeric soluble form of CD5 (CDR-Ig) shows beneficial
effects in experimental murine models of antibody-in-
duced glomerulonephritis (Biancone et al., 1996) or ex-
perimental autoimmune encephalitis (Axtell et al.,
2004). So far, there are no similar data for soluble forms
of CD6, chimeric or not. Taken together, these results
strongly support a potential role for recombinant soluble
CD5 in the modulation of autoimmune disease.

An early study described decreased tumor growth and
improved survival in tumor-bearing mice treated with
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nondepleting anti-CD5 antibodies (Hollander, 1984);
this effect was not due to direct interaction of anti-CD5
antibodies with tumor cells; rather, it was mediated by
enhancement of host T-cell response, in agreement with
previously described CD5 functions. Studies with ani-
mal models have also shown that treatment with mono-
clonal anti-CD5 antibodies can indeed improve disease
score and decrease severity of autoimmune disorders:
this has been described for collagen-induced arthritis in
mice (Plater-Zyberk et al., 1994) and also for mesan-
gioproliferative glomerulonephritis in rats (Ikezumi et
al., 2000). Translation of these results into the clinic,
however, has met with mixed success: although prelim-
inary studies had shown encouraging safety and activity
profiles for an immunoconjugate of ricin A chain and
anti-CD5 monoclonal antibody in rheumatoid arthritis
(Strand et al., 1993; Fishwild and Strand 1994), a later,
double-blind, placebo-controlled study failed to find a
significant decrease in disease severity for the immu-
noconjugate-treated patients (Olsen et al., 1996). It
should be noted, however, that an unusually high
placebo response was observed in this study. Like-
wise, although an early study suggested some activity
for this immunoconjugate in SLE (Stafford et al.,
1994), no further efforts have been carried out along
this line of treatment.

An important thing to consider when dealing with
CD5-related therapies is that although inducing expres-
sion of CD5 on lymphocytes may have a protective effect
in autoimmune disorders, it might also result in in-
creased risk of tumor development (Dalloul, 2009). This
effect might be mediated through IL-10 production in-
duced by CD5, which decreases tumor-specific T-cell
immunity, or by a decrease in antitumor efficacy of
CD5-expressing T cells, which seems to be inversely
proportional to the levels of expressed CD5 (Dorothée et
al., 2005).

Regarding the therapeutic use of anti-CD6 antibodies,
a successful application for them has been found in the
prevention of graft-versus-host disease in patients un-
dergoing bone marrow transplant. Anti-CD6 antibodies
have been used to deplete mature T cells ex vivo from
bone marrow from syngeneic or allogeneic donors before
its transplant into recipients (Soiffer et al., 1992, 1997;
Patel et al., 2008). The claimed advantage of anti-CD6
was that it specifically removes mature T cells without
significantly affecting NK cells, B cells, or myeloid pre-
cursors; the ex vivo therapy also reduced patient mor-
bidity and permitted bone marrow transplants in older
patients. Bone marrow depletion with anti-CD6 has also
been used in the treatment of hematological malignan-
cies such as multiple myeloma (Seiden et al., 1995) and
non-Hodgkins lymphoma (Soiffer et al., 1998). Because
the use of CD6-depleted bone marrow carries a low risk
of transplant-related complications, it has become a
valid treatment alternative for patients at high risk of
relapse after autologous transplant.

VIII. CD163: the Hemoglobin Receptor and More

CD163 is a macrophage-specific transmembrane type
I glycoprotein identified in a number of species
(Kishimoto et al., 1997). Structurally, CD163 has an
ectodomain consisting of 9 SRCR domains in tandem,
with SRCR domains 6 and 7 separated by a PST-rich
interdomain segment. A short linker section then con-
nects SRCR domain 9 with a transmembrane domain
and an intracellular cytoplasmic tail. This structure is
reminiscent of that of CD163-L1 (Gronlund et al., 2000),
except that the latter possesses 12 SRCR domains. It is
believed that CD163 could have arisen from CD163-L1
through loss of the first three SRCR domains (Gronlund
et al., 2000; Stover et al., 2000). The cytoplasmic tail of
CD163 is subjected to alternative splicing, generating
three variants of different length: the most abundant
form has a tail of 49 amino acids, while longer forms of
84 or 89 amino acids exist (Law et al., 1993; Ritter et al.,
1999). The first 42 amino acids of this tail are preserved
in all existing forms and contain phosphorylation target
sequences for creatine kinase and protein kinase C; ad-
ditional phosphorylation sites are also present in the
longer cytoplasmic tail forms (Van Gorp et al., 2010).
Alternative splicing forms affecting the extracellular
part of CD163 have also been reported, one of them
possessing a stop codon after the first SRCR domains,
generating a truncated, possibly secreted form, and the
second one giving rise to a protein with an additional 33
amino acids in between SRCR domains 5 and 6 (Law et
al., 1993). The cDNA sequence predicts 11 putative N-
glycosylation sites; accordingly, there is a reduction in
molecular weight after treatment with N-glycosidase
(Högger et al., 1998; Fabriek et al., 2007).

CD163 is a monocyte/macrophage-specific protein, in
contrast to other members of the SRCR superfamily.
Expression is strongly up-regulated by anti-inflamma-
tory inducers (such as glucocorticoids, IL-6, and IL-10)
and down-regulated by proinflammatory agents (such as
LPS, TNF-�, and IFN�). The presence in the 5�-flanking
region of glucocorticoid responsive elements and binding
sites for a number of transcription factors involved in
myeloid-specific gene expression and differentiation
(Ritter et al., 1999) explains how those agents can reg-
ulate CD163 expression (Morganelli and Guyre 1988;
Zwadlo-Klarwasser et al., 1990; Högger et al., 1998; Van
den Heuvel et al., 1999). CD163 expression correlates
with the degree of cell differentiation and activation;
indeed, tissue macrophages have increased expression of
CD163 compared with levels found in monocytes (Sán-
chez et al., 1999). CD163 has therefore been proposed as
a marker of monocyte differentiation. Expression of
CD163 could also correlate with the degree of macro-
phage activation, because newly infiltrating macro-
phages are CD163-negative but up-regulate their expres-
sion during the healing phase of acute inflammation, in
chronic inflammation, and also in wound-healing tissue
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(Zwadlo et al., 1987; Verschure et al., 1989). However,
the mechanisms of CD163 expression are regulated in
a complex way: for example, LPS binding to TLR4
induces expression of IL-6 and IL-10, which in turn
induce CD163 expression (Weaver et al., 2006, 2007).
LPS is then able to indirectly induce expression of
CD163. Likewise, reduction in CD163 expression me-
diated by LPS is not a consequence of synthesis inhi-
bition or increased turnover, but rather of induced
ectodomain shedding.

The CD163 ectodomain shedding leads to a soluble
form circulating in plasma (Droste et al., 1999; Møller et
al., 2002). Soluble CD163 (sCD163) is not generated by
alternative splicing but is the product of membrane-
bound CD163 cleavage by ADAM17 (Etzerodt et al.,
2010); whether sCD163 can also be generated by alter-
native splicing has not yet been determined. The molec-
ular weight of sCD163 suggests that this form contains
almost the entire extracellular region of membrane-
bound CD163 (Møller et al., 2002). Shedding can be
induced by mitogens such as phorbol 12-myristate 13-
acetate (PMA) (Droste et al., 1999), endotoxins such as
LPS (Hintz et al., 2002; Weaver et al., 2006), mediators
of oxidative stress (Timmermann and Högger, 2005),
and Fc� receptor cross-linking (Sulahian et al., 2004).

The physiological role of sCD163 is unknown, but it
seems to be of lesser importance in the binding of Hb-Hp
complexes, the best-studied role of CD163 (see section
VIII.A), which bind preferentially to membrane-bound
CD163 (Møller et al., 2010). It is noteworthy that levels
of sCD163 are increased in patients suffering from in-
fections and autoimmune disorders (Van Gorp et al.,
2010) and sCD163 has been reported to exert a strong
anti-inflammatory effect on T cells, inhibiting their ac-
tivation and proliferation (Högger and Sorg, 2001). This
could point to a role for sCD163 in controlling and re-
ducing inflammation.

A regulatory role has been suggested for CD163 dur-
ing erythropoiesis because of its reported ability to bind
erythroblasts and promote erythroid expansion in vitro
(Fabriek et al., 2007). The role of CD163 in the immune
response, however, is still unclear, because this receptor
seems to elicit different reactions depending on stimuli
and context. On the one hand, expression of CD163 is
up-regulated in macrophages by anti-inflammatory com-
pounds such as IL-10 and glucocorticoids; this in turn
results in induction of IL-10 production by stimulated
macrophages, creating a positive loop. IL-10-produc-
ing macrophages, also known as alternatively acti-
vated macrophages or M2 macrophages, are involved
in Th2-type responses, inhibit T-cell proliferation, and
possess anti-inflammatory properties (Fairweather
and Cihakova, 2009). This has led CD163 to be consid-
ered a marker of M2 anti-inflammatory macrophages.
Furthermore, products of heme degradation after endo-
cytosis by CD163 have strong anti-inflammatory and
antioxidative activity (Otterbein et al., 2003). This

points to a role for CD163 in preventing and controlling
excessive inflammatory reaction, and helps to explain
the presence of high levels of CD163 during the late
phase of inflammation or in chronically inflamed tissues
(Zwadlo et al., 1987; Topoll et al., 1989). However, cross-
linking of CD163 with antibodies elicits a different type
of response from macrophages, namely the synthesis of
pro-inflammatory cytokines such as IL-1� and TNF�
(Van den Heuvel et al., 1999; Polfliet et al., 2006). Fur-
thermore, binding of CD163 to bacteria also induces a
similar pro-inflammatory response (Fabriek et al.,
2009). These data indicate that CD163-mediated modu-
lation of the immune response depends on the type of
ligand bound and the presence of different cytokines in
the environment.

CD163� macrophages are also found infiltrating tu-
mor tissue (Peng et al., 2009). As mentioned previously,
CD163 expression is particularly high in alternatively
activated macrophages, which are known to secrete an-
giogenic factors (Kodelja et al., 1997). Enhanced angio-
genesis is found in follicular lymphoma near sites of
CD163� macrophage infiltration (Clear et al., 2010). The
presence of an increased number of CD163� macro-
phages infiltrating the tumor was found to correlate
with neoangiogenesis and poor prognosis. These results
were supported by work on intrahepatic cholangiocarci-
noma, which revealed that CD163 was a prognostic
marker for the disease (Hasita et al., 2010). CD163 can
also bind to and sequester TNF-like weak inducer of
apoptosis from the environment, inhibiting its ability to
induce apoptosis of tumor cells (Bover et al., 2007).

A. Role in Hemoglobin Clearance

The most established function of CD163 is its ability to
bind and endocytose Hb-Hp complexes (Kristiansen et al.,
2001). Hemoglobin is released into the circulation after
intravascular hemolysis of reticulocytes or senescent red
blood cells but also during autoimmune, infectious, or in-
herited disorders causing accelerated hemolysis. Removal
of hemoglobin is of key importance as a result of the tox-
icity and oxidative potential of iron-containing heme. Hap-
toglobin is a protein produced by the liver and circulating
in plasma; it is able to bind free hemoglobin and experi-
ences a conformational change that reveals a neoepitope,
allowing it to bind CD163 (Kristiansen et al., 2001). Hap-
toglobin is present in humans in two allelic forms, Hp-1
and Hp-2; CD163 has higher functional affinity for Hp 2-2
or Hp 2-1 multimers than for Hp 1-1 dimers (Kristiansen
et al., 2001). Interaction between CD163 and Hb-Hp com-
plexes is of very high affinity and is calcium-dependent
(Madsen et al., 2004). Hb-Hp complexes are subsequently
endocytosed, and the heme group is converted intracellu-
larly into iron and bilirubin by heme oxygenase-1 (HO-1)
(Nielsen et al., 2010). It is noteworthy that HO-1 expres-
sion can be induced by glucocorticoids and IL-10, the very
same compounds known to induce CD163 expression
(Wagener et al., 2003; Philippidis et al., 2004). Further-
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more, binding of CD163 to Hb-Hp complexes triggers mac-
rophage secretion of cytokines, among them IL-10. These
data point to a coordinated up-regulation of the system
that is activated upon the release of hemoglobin into the
circulation and can help protect tissues from toxic and
oxidative heme-mediated damage. As mentioned previ-
ously, the response induced by CD163 depends on the
stimulus; in this way, cross-linking of CD163 by Hb-Hp
induces a different cytokine profile than cross-linking with
anti-CD163 antibodies (Van den Heuvel et al., 1999; Ritter
et al., 2001; Madsen et al., 2004).

Besides its protective function, heme clearance from
the circulation could reduce the availability of iron to
pathogens, thereby helping to fight infection (Madsen et
al., 2004; Weaver et al., 2006).

B. Role in Pathogen Recognition

Like other SRCR superfamily members, CD163 has
been recently reported to bind to Gram-positive and Gram-
negative bacteria, acting as a pattern recognition receptor
(Fabriek et al., 2009). The binding site was mapped to a
consensus sequence including the GRVEVxxxxxW motif—
already implicated in bacteria binding in gp340/SAG/
DMBT1 (Bikker et al., 2004a)—within the second SRCR
domain. Similar to results obtained in DMBT1, the con-
sensus peptide alone was able to induce aggregation of
bacteria. It is noteworthy that the same domain has been
reported to be implicated in adhesion to erythroblasts
(Fabriek et al., 2007), whereas binding to Hb-Hp com-
plexes, however, has been mapped to the third SRCR do-
main (Madsen et al., 2004). Binding of bacteria to CD163
triggered the production of proinflammatory cytokines
such as TNF� (Fabriek et al., 2009). However, CD163 did
not seem to have functional implications in phagocytosis,
which led authors to postulate a role for this receptor as a
bacteria sensor.

A broader role for CD163 in the defense against patho-
gens can be gathered from evidence that this gene is
up-regulated in central nervous system macrophages in
a neuroAIDS model (Roberts et al., 2003), in liver mac-
rophages from patients with chronic hepatitis (Hiraoka
et al., 2005a), and in brain macrophages and microglia of
monkeys infected with the simian immunodeficiency vi-
rus (SIV) (Borda et al., 2008). Furthermore, CD163 me-
diates infection by the African swine fever virus (Sán-
chez-Torres et al., 2003); indeed, CD163 was found to be
necessary for infection of macrophages by this virus.
Supporting the role of CD163 as a possible viral entry
target, transfection of full-length CD163 conferred sus-
ceptibility to porcine reproductive and respiratory syn-
drome virus (PRRSV) infection to porcine macrophages
(Calvert et al., 2007). Sialoadhesin was later found to be
a necessary partner of CD163 in PRRSV infection (Van
Gorp et al., 2008). Interaction with PRRSV was mapped
to the fifth SRCR domain (Van Gorp et al., 2010), in
contrast with the sites reported to bind bacteria and
Hp-Hb complexes. More recent studies have suggested

that CD163 is not only implicated in PRRSV entry, but
also in its replication efficiency (Patton et al., 2009);
indeed, recombinant CD163 lacking the cytoplasmic tail
was shown to promote viral replication in PRRSV-in-
fected macrophages to a higher extent than that of full-
length CD163 (Lee and Lee, 2010).

C. Diagnostic and Therapeutic Potential: Utility as
Serum/Cell Marker of Inflammatory Status during
Infectious and/or Malignant Disorders

As previously mentioned, sCD163 levels are increased
in serum in response to a number of pathological condi-
tions; this suggests a potential use as a marker of dis-
ease severity and progression. An early report on this
potential capacity failed to distinguish healthy patients
from those with infection, different degrees of sepsis and
bacteremia on the basis of their sCD163 serum levels
(Gaïni et al., 2006). However, bacterial and nonbacterial
infections in patients suspected of meningitis could be
distinguished on the basis of elevated sCD163 serum
levels (Knudsen et al., 2007). Likewise, sCD163 levels
were found to be significantly elevated in patients with
S. pneumoniae bacteremia compared with healthy con-
trol subjects (Møller et al., 2006); furthermore, sCD163
levels were predictive of fatal outcome in older patients.
A decreased survival rate was also found for patients
with tuberculosis with levels of sCD163 above the refer-
ence upper limit; correlation was independent of age and
gender (Knudsen et al., 2005). Concomitant HIV infec-
tion further increased sCD163 levels. This could indicate
that sCD163 serum levels could be used as markers to
follow-up infectious disease for certain pathogens.

It has been shown that heme-mediated toxicity is as-
sociated with bacterial infection, and that the release of
excessive amounts of heme during infection could induce
lethal sepsis (Larsen et al., 2010). In a manner similar to
that shown for Hp (Boretti et al., 2009) and hemopexin
(Lin et al., 2010), exogenous administration of sCD163
could then enhance the clearing of free heme from the
circulation and thus prevent the development of sepsis
or improve its outcome. Although Hb-Hp complexes bind
preferentially to membrane-bound CD163, this protein
could prove useful in the scavenging of free heme.

Reflecting the involvement of CD163 in viral patho-
genesis, CD163� monocytes are increased in patients
with HIV-1 compared with healthy controls or with pa-
tients infected with HIV-1 but with undetectable viral
load, and their number correlates with viral load more
accurately than the number of CD4� T cells (Fischer-
Smith et al., 2008). CD163� monocytes were also found
to be inversely correlated to the number of CD4� T cells,
suggesting that, as is the case with PRRSV, CD163
could be involved in HIV-1 infection of monocytes as well
as disease progression and might be a useful marker for
disease follow-up. This may also apply to the use of
sCD163 in liver disease: compared with healthy pa-
tients, levels of sCD163 were increased in patients with
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acute and chronic hepatitis but were highest in patients
with fulminant hepatic failure (FHF) (Hiraoka et al.,
2005b). sCD163 progressively decreased in survivors of
FHF, but not in nonsurvivors, suggesting a link with
disease outcome.

Consistent with the fact CD163 is associated with
M2 macrophages, which play an important role in
defense against pathogens eliciting a Th2 response,
such as parasites (Fairweather and Cihakova, 2009),
sCD163 is found elevated in the serum of patients
with malaria compared with healthy persons (Kusi et
al., 2008). sCD163 levels were higher in patients with
uncomplicated malaria than in those with cerebral
malaria or severe malarial anemia, suggesting that
the anti-inflammatory properties of sCD163 protect
these patients from further inflammation-related
damage.

Some noninfectious disorders have also shown an
increase in sCD163 levels, particularly autoimmune
diseases. Potential for use of sCD163 as a marker of
disease severity and progression, as well as for initial
diagnosis, has been suggested for autoimmune arthri-
tis (Matsushita et al., 2002; Baeten et al., 2004), re-
active hemophagocytic syndrome (Schaer et al., 2005),
macrophage activation syndrome (Bleesing et al.,
2007), and multiple sclerosis (Fabriek et al., 2007).

Besides the potential use of sCD163 as a marker of
macrophage activity in disease, it has also been pro-
posed to exploit CD163 in therapy by using this recep-
tor for targeting drugs to macrophages (Nielsen and
Moestrup, 2009). This has rather intriguing perspec-
tives because macrophages, as the main producers of
TNF-� and other proinflammatory cytokines, are a
main effector cell in many inflammatory diseases such
as rheumatoid arthritis and chronic intestinal inflam-
mation. CD163 is also highly expressed in tumor-
associated macrophages, which at present is a focus in
cancer research and treatment because of their impor-
tance in maintaining and supporting cancer growth.

IX. DMBT1/gp340/Salivary Agglutinin: an
Antioncogene with Broad Protective Functions

DMBT1 (for deleted in malignant brain tumors 1) is a
mosaic protein highly conserved among different species
and found as a secreted protein, although isoforms may
exist that function as transmembrane receptors. Three
proteins found in human tissue—DMBT1, gp340 and
SAG (for salivary agglutinin)—have all been found to be
products of the same gene, termed DMBT1 (Holmskov et
al., 1999; Prakobphol et al., 2000). Meanwhile, species
homologs have been described in mouse (CRP-ductin,
vomeroglandin and muclin), rabbit (hensin), rat
(ebnerin), cow (bovine gallbladder mucin), and rhesus
monkey (H3) (Sarrias et al., 2004a). All these proteins
share a common structure of a defined number of
group B SRCR domains separated by stretches of 20 to

23 amino acid residues [SRCR interspersed domains
(SIDs)], as well as of CUB and ZP domains. The CUB
domain can be found in complement proteins such as
C1s/C1r, whereas the ZP domain is present in glyco-
proteins from the zona pellucida of oocytes. Both CUB
and ZP domains have been implicated in protein-pro-
tein interactions. ZP domains are also involved in
protein oligomerisation, a function they could also
perform in DMBT1/gp340/SAG, in that this protein
seems to form aggregates (Young et al., 1997; Oho et
al., 1998).

Three transcripts have been described for DMBT1/
gp340/SAG, with lengths of 6, 7.5, and 8 kb; all three are
expressed in fetal lung, whereas only the 8-kb transcript
was detected in adult lung. The 6- and 7.5-kb transcripts
were also present in adult small intestine (Mollenhauer
et al., 1997). DMBT1/gp340/SAG possesses 8 to 13 tan-
dem-repeated highly homologous SRCR domains sepa-
rated by SIDs and a lower homology 14th domain sepa-
rated from the others by a Thr-rich region and a CUB
domain (Mollenhauer et al., 1997, 1999; Holmskov et al.,
1999). It was later found that the number of tandem
repeat SRCR domains can vary between 8 and 13 in
naturally occurring alleles (Mollenhauer et al., 2002;
Ligtenberg et al., 2007). Further toward the C terminus
are a second CUB domain and the ZP domain. Exon 55
of the DMBT1 genomic DNA encodes for a potential
transmembrane sequence, but so far, no transcript con-
taining this exon has been detected in humans (Mollen-
hauer et al., 1999). Twelve potential N-glycosylation
sites are predicted from the DMBT1/gp340/SAG protein
sequence; sites of O-glycosylation within the SIDs have
also been proposed (Bikker et al., 2002). Glycosylation
accounts for a substantial proportion—approximately
25%—of the total molecular weight of the protein (Oho
et al., 1998).

Expression of DMBT1/gp340/SAG has been detected
in several different types of tissue, mostly of epithelial
origin, such as lung, trachea, salivary gland, small in-
testine, and stomach. Lower levels have been found in
brain, testis, uterus, prostate, pancreas, and mammary
glands (Holmskov et al., 1999); DMTB1 expression in rat
and monkey endometrial tissue was found to be estro-
gen-dependent (Tynan et al., 2005). Another report
found DMBT1/gp340/SAG to be expressed across the
immune system, in T- and B-cell lines, spleen, thymus,
lymph nodes, bone marrow, and alveolar macrophages
(Mollenhauer et al., 2000).

A. Role in Epithelial Cell Differentiation and
Pathogen Recognition

DMBT1/SAG/gp340 was originally reported based on
deletions in malignant brain tumors (Mollenhauer et al.,
1997), hence its name. However, it was later found that
inactivating mutations of the gene in astrocytic gliomas
were small and infrequent (Mueller et al., 2002). There
are hints that the repetitive SRCR/SID region of
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DMBT1/gp340/SAG shows various different rearrange-
ments in cancer cells, but these are difficult to resolve
and to discern from already existing interindividual
polymorphisms (Mollenhauer et al., 1999, 2000, 2002).
Furthermore, certain subpopulations of glioblastoma
multiforme were actually shown to overexpress the pro-
tein (Mollenhauer et al., 2000). However, most cancer
types that have been analyzed displayed a down-regu-
lation of DMBT1/gp340/SAG expression levels, so that
this might represent a more common mechanism of in-
activation (Mori et al., 1999; Takeshita et al., 1999; Wu
et al., 1999; Mollenhauer et al., 2000, 2001). A clearer
role for DMBT1/gp340/SAG in the development, regen-
eration, and homeostasis of epithelia is now emerging
thanks to recent reports.

DMBT1/gp340/SAG levels in the adult were found to be
much lower than those of the fetus, whereas the spatial
location and the subcellular distribution of the protein also
varied according to the developmental stage (Mollenhauer
et al., 2000). Studies on the DMBT1/gp340/SAG mouse and
rabbit homologs, CRP-ductin and hensin, respectively,
first indicated that these proteins could be involved in
epithelial differentiation. Hensin has been shown to medi-
ate terminal differentiation of kidney epithelial cells (Al-
Awqati et al., 1998, 2000; Vijayakumar et al., 1999); it has
been hypothesized that hensin might also influence differ-
entiation of other epithelia, given its expression pattern. A
recent report described that expression of DMBT1/gp340/
SAG was induced in gastric cells undergoing G0/G1 arrest
and down-regulated after the cells had finished their dif-
ferentiation process (Kang et al., 2005), implicating
DMBT1/gp340/SAG in cell fate decisions.

Expression of this protein has in several species been
readily detected in the crypt cells of the small intestine
(Cheng et al., 1996; Takito et al., 1996; Mollenhauer et
al., 2000), an area composed mostly of stem and progen-
itor cells. The conserved expression of this protein at
such an area in different species suggests a role for
DMBT1/gp340/SAG in small intestine epithelial regen-
eration. Further evidence on the role of DMBT1/gp340/
SAG in epithelia regeneration came from a study on the
rat homolog of this protein, ebnerin: proliferation of
duct-located stem cells, possessing the ability to differ-
entiate into hepatocytes and thus regenerate liver tissue
affected by toxins or injury, was associated with induc-
tion of ebnerin expression in these cells (Bisgaard et al.,
2002). A possible mechanism for DMBT1/gp340/SAG in
tissue regeneration could involve interaction with trefoil
factors: these have been shown to promote the regener-
ation and healing of the gastrointestinal tract. Mouse
Dmbt1 has an expression pattern very similar to that of
trefoil factor 2; furthermore, porcine DMBT1 was found
to interact with trefoil factor 2 (Thim and Mørtz, 2000).

As well as being deregulated in epithelial malignan-
cies, expression of DMBT1/gp340/SAG can be affected by
inflammation and infection. Indeed, high levels of
DMBT1/gp340/SAG were found in the tracheal aspirates

and lung tissue sections of newborn infants with bacte-
rial infections (Müller et al., 2007) and in the A549 lung
cell line after pro-inflammatory stimulation with PMA
(Kang et al., 2002). Inflammation—whether induced by
TNF�, by LPS, or by inflammatory bowel disease—also
up-regulated DMBT1/gp340/SAG expression in intesti-
nal epithelial cells (Renner et al., 2007; Rosenstiel et al.,
2007). Moreover, a polymorphism of DMBT1/gp340/SAG
giving rise to a protein with fewer SRCR domains was
associated with increased risk of Crohn’s disease. Con-
firming the involvement of this protein in intestinal
inflammation, knockout mice for dmbt1 were more sus-
ceptible to dextran sulfate-induced colitis (Renner et al.,
2007). However, two further dmbt1 knockout mouse
models display different phenotypes: one of them
showed a severe phenotype with embryonic lethality as
a result of developmental defects (Takito and Al-Awqati,
2004), whereas the other was viable but did not display
enhanced susceptibility to induced colitis (De Lisle et al.,
2008). Although the reasons for the differences in via-
bility remain unclear, it was subsequently shown that
high concentrations of dextran sulfate level out the pro-
tective effect of DMBT1 because of a direct interaction
between DMBT1 and dextran sulfate (End et al., 2009).

The first reported function for DMBT1/gp340/SAG
was that of a salivary agglutinin for Streptococcus mu-
tans, the main causative agent of dental caries (Ericson
and Rundegren, 1983). Subsequently, it was shown that
this binding was calcium-dependent and extended to a
number of different Gram-positive and Gram-negative
bacteria, including E. coli, Lactobacillus casei, Helico-
bacter pylori, S. aureus, S. pneumoniae, and Haemophi-
lus influenzae (Prakobphol et al., 2000; Bikker et al.,
2002; Madsen et al., 2003); the protein was also shown to
inhibit cytoinvasion of intestinal epithelial cells by Sal-
monella enterica (Rosenstiel et al., 2007). Specific com-
ponents at the bacterial surface were found to be ligands
for DMBT1/gp340/SAG, namely a group of receptors on
the surface of streptococci termed antigen I/II polypep-
tides (Jenkinson and Demuth, 1997); however, DMBT1/
gp340/SAG also bound to H. pylori and S. aureus, which
do not possess these polypeptides. Binding of DMBT1/
gp340/SAG to bacteria has been shown to depend on
fucose and sialic acid residues (Demuth et al., 1990; Oho
et al., 1998), suggesting that carbohydrate moieties are
of primary importance in the interaction with bacteria.
However, other studies put this theory in doubt by re-
porting that binding of DMBT1/gp340/SAG to bacteria is
unaffected by chemical modification of carbohydrate res-
idues in the protein (Oho et al., 1998; Ligtenberg et al.,
2000). Indeed, the peptidic region of DMBT1/gp340/SAG
has been shown to be involved in bacterial binding.
Chemical fragmentation and peptide mapping, followed
by synthesis of peptides representing the consensus se-
quences of SRCR domains and SIDs, showed that an
11-mer peptide (GRVEVLYRGSW) present in a loop in a
SRCR domain was the only DMBT1/gp340/SAG peptide
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sequence able to agglutinate S. mutans in a calcium-
dependent fashion and to bind different types of bacteria
(Bikker et al., 2002). This peptide is present in eight
SRCR domains of DMBT1/gp340/SAG, explaining its
ability to aggregate bacteria through multiple binding
sites. However, the peptide was also able to induce ag-
glutination of bacteria on its own, possibly by mimicking
the multivalent structure of the protein by self-aggregation.

DMBT1/gp340/SAG has also been reported to protect
mucosae against viruses by directly binding, agglutinat-
ing, and neutralizing them. Indeed, DMBT1/gp340/SAG
present in alveolar fluid was shown to inhibit the infec-
tivity of influenza A virus (Hartshorn et al., 2003); in
this case, the antiviral effects were found to be mediated
by interactions between virions and sialic acid residues
present on the surface of DMBT1/gp340/SAG. Resis-
tance to infectivity was shown to depend on the number
of sialic acid residues (Hartshorn et al., 2006), remark-
ing the importance of this type of glycosylation in the
antiviral activity of DMBT1/gp340/SAG. This antiviral
activity was also found to extend to equine and porcine
influenza viruses as well as the human variety. HIV-1
infectivity is also inhibited by binding in a calcium-
dependent fashion to DMBT1/gp340/SAG through the
surface glycoprotein gp120 (Wu et al., 2003); interest-
ingly, the binding was shown to be dependent on carbo-
hydrate moieties and the N-terminal SRCR found to be
directly implicated in the interaction (Wu et al., 2006).
gp120 binds to DMBT1/gp340/SAG through a different
site than that implicated in CD4 binding (Wu et al.,
2004). In fact, CD4 binding to gp120 seems to enhance
the interaction between gp120 and DMBT1, suggesting
that DMBT1 specifically blocks entry of HIV-1 into T
cells. In stark contrast with these results, recent studies
reported that DMBT1/gp340/SAG expression in macro-
phages and genital epithelial cells actually facilitates
HIV-1 infection, which was proposed to be based on
DMBT1/gp340/SAG simultaneously promoting transfer
of HIV-1 to T cells (Stoddard et al., 2007; Cannon et al.,
2008).

In addition to directly binding bacteria and viruses,
DMBT1/gp340/SAG is also able to bind soluble IgA, which
results in a cooperative effect in bacteria agglutination
(Rundegren and Arnold, 1987; Armstrong et al., 1993).
Enhanced clearance of pulmonary bacteria and viruses is
also achieved by DMBT1/gp340/SAG in cooperation with
surfactant proteins SP-A and SP-D, involved in the innate
defense of lung mucosae (Ligtenberg et al., 2001; Hart-
shorn et al., 2003); in this case, although gp340 can bind to
SP-D/A at a site distinct from the mannan-binding site, the
cooperative effect was achieved not by binding of DMBT1
to the surfactant proteins but rather by the combined ef-
fects of each protein working independently (White et al.,
2005). Binding of DMBT1/gp340/SAG to the complement
protein C1q activates the classic complement pathway,
inducing inflammatory response (Boackle et al., 1993);
DMBT1/gp340/SAG also seems to activate the lectin path-

way of complement through interaction with mannose-
binding lectin (A. Ligtenberg, personal communication).
DMBT1/gp340/SAG has further been reported to stimulate
migration of alveolar macrophages (Tino and Wright,
1999), suggesting that its protective functions exceed those
that involve direct binding of pathogens. Thanks to inter-
actions with other proteins – whether direct or in cooper-
ation - DMBT1/gp340/SAG is able to carry out its protec-
tive functions in a versatile fashion.

Taken together, these results indicate that DMBT1/
gp340/SAG is able to bind, agglutinate and/or neutral-
ize a variety of bacteria and viruses, either directly or
in cooperation with other innate immunity proteins,
providing a clear role for this protein in the protection
of epithelia and mucosae from pathogens. Coupled
with its role in innate defense of epithelia and muco-
sae, DMBT1 involvement in epithelia regeneration
and homeostasis puts this protein in a key position to
integrate signals from the environment and maintain
epithelial integrity through interaction with patho-
gens, host proteins, and growth factors or surface
molecules in the stem-cell compartment, possibly
through its CUB and ZP domains.

In this context, it is conceivable that alterations in
DMBT1/gp340/SAG could lead to tumor development.
Indeed, deregulation of DMBT1 expression has been
reported for a number of tumors, including gliomas (Lin
et al., 1998), small- and non–small-cell lung cancer cell
lines and tumors (Takeshita et al., 1999; Wu et al., 1999;
Mollenhauer et al., 2002), carcinoma of the esophagus
(Mori et al., 1999; Mollenhauer et al., 2001), epithelial
skin cancer (Mollenhauer et al., 2003), intrahepatic chol-
angiocarcinoma (Sasaki et al., 2003), breast cancer
(Braidotti et al., 2004; Mollenhauer et al., 2004; Black-
burn et al., 2007), salivary gland tumors (Bikker et al.,
2004b), pancreatic ductal adenocarcinomas (Hustinx et
al., 2004; Cheung et al., 2008), oral squamous cell car-
cinoma (Imai et al., 2005), gastric cancer (Conde et al.,
2007), and cutaneous melanoma (Helmke et al., 2009).
In many cases, expression of DMBT1/gp340/SAG was
deregulated not only at the tumor site but also in flank-
ing tissue, which could arise as a consequence of the
proinflammatory environment generated by the tumor.
The high number of repetitive sequences in the DMBT1/
gp340/SAG gene could be responsible for instability of
the gene and the subsequent arising of alterations.

B. Therapeutic and Diagnostic Potential

The deregulation of DMBT1/gp340/SAG expression
in a number of different tumor types makes this pro-
tein an attractive candidate for use as a tumor bio-
marker. Diagnosis of early pancreatic cancer is com-
plex because of the absence of clear symptoms and the
lack of effective screening tests (Li and Abbruzzese,
2010); this is one of the reasons why pancreatic cancer
has a 5-year survival rate of less than 5%. Two inde-
pendent studies have identified DMBT1/gp340/SAG
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as a gene consistently overexpressed in pancreatic
tumors compared with normal pancreatic tissue (Hus-
tinx et al., 2004; Cheung et al., 2008). Both studies
used different approaches to identify biomarkers,
which further supports the differential expression of
DMBT1/gp340/SAG in normal and malignant pancre-
atic tissue. This could allow for the development of
DMBT1/gp340/SAG screening tests as part of pancre-
atic cancer diagnosis.

Breast cancer is the most frequent malignancy among
women. Studies with mice have suggested that DMBT1/
gp340/SAG expression is related to breast cancer sus-
ceptibility, being significantly reduced in tumor com-
pared with normal breast tissue (Blackburn et al., 2007).
These results have been further confirmed by the iden-
tification of two polymorphisms associated with in-
creased risk of breast cancer in women older than 60
years old (Tchatchou et al., 2010). It is noteworthy that
one of the polymorphisms was located at the promoter
region of the DMBT1 gene and was associated with a
significantly reduced promoter activity in vitro. Detec-
tion of these polymorphisms could single out persons at
risk and provide them with extra vigilance and an early
diagnosis that would reduce morbidity and mortality.
Finally, heterogeneity of DMBT1/gp340/SAG expression
in different tumor types could help to distinguish them,
as in the case of anorectal and cutaneous melanoma:
while cutaneous melanoma is the most common skin
malignancy and has a mean 5-year survival of 80%,
anorectal melanoma is rare but is associated with an
extremely poor prognosis. Moreover, both types of mel-
anoma seem to express different levels of DMBT1/gp340/
SAG. These two tumor types can then be discriminated
on the basis of their DMBT1 expression (Helmke et al.,
2009), facilitating diagnosis and ensuring that the right
treatment for the disease is used in each case.

Apart from the use of DMBT1/gp340/SAG as a tumor
biomarker, there is undoubted potential for this protein
in the treatment and management of infections—espe-
cially oral (as in dental cavities), intestinal, and pulmo-
nary—through its recognized activity as a pathogen-
neutralizing agent. More speculatively, this protein
might also be of use in the management of chronic in-
flammatory disorders such as inflammatory bowel dis-
ease and Crohn’s disease.

X. Sp�/AIM/Api6/CD5L: An Antiapoptotic Protein
Secreted by Macrophages

Sp� (secreted protein �) and AIM (apoptosis inhibi-
tory molecule; also known as Api6 and CD5L) are ho-
mologous human and murine secreted proteins belong-
ing to group B of the SRCR superfamily. AIM is
generally considered to be the murine homolog of Sp�
(Gebe et al., 2000). They both possess a secretory signal
followed by three SRCR domains, a structure that
closely resembles that of CD5 and CD6; however, these

proteins display higher homology with fellow group B
members T19/WC1 and CD163/M130. Although Sp� and
AIM share a high level of sequence homology (70%),
their glycosylation patterns differ considerably; al-
though the Sp� sequence contains no putative N-linked
glycosylation sites (Gebe et al., 1997), three of these sites
have been found in the AIM amino acid sequence (Gebe
et al., 2000). Sp�, however, has been shown to possess
terminal sialic acid residues presumably attached to
O-linked carbohydrate moieties bound to a PST-rich
polypeptide that separates SRCR domains 1 and 2 (Sar-
rias et al., 2004b). Divergent glycosylation patterns
could account for functional differences reported for
these proteins.

Expression of Sp� mRNA is found mostly in lymphoid
tissues, including spleen, lymph nodes, thymus, bone
marrow, and fetal liver, but not in peripheral blood
leukocytes. In contrast, expression of AIM is restricted
to tissue macrophages, although only a fraction of these
express the protein (Miyazaki et al., 1999). Subpopula-
tions of AIM-expressing macrophages are found at in-
flammation sites and at the thymic cortex, suggesting
that AIM is involved in both regulation of the inflam-
matory response and in thymocyte development. Ex-
pression of AIM has been found to be increased by the
inflammatory environment but not by common stimuli
such as PMA, LPS, and cytokines such as IFN-� or
interleukins (Miyazaki et al., 1999). Both Sp� and AIM
are found circulating in serum (Gebe et al., 2000; Sarrias
et al., 2004b), where Sp� associates with IgM but not
IgG or IgA (Tissot et al., 2002; Sarrias et al., 2005).

A. Role in Apoptosis, Arteriosclerosis, and
Pathogen Recognition

AIM has been reported to bind strongly to murine
macrophages and weakly to T-cell lines, but not to B-cell
lines or to peripheral blood mononuclear cells (Gebe et
al., 2000). Despite its apparent lack of binding to B-cell
lines, AIM was shown to strongly inhibit the prolifera-
tion and antibody production of spleen B cells stimu-
lated with LPS (Yusa et al., 1999); this inhibition, how-
ever, was only observed when cells were incubated with
AIM in the presence of TGF-�, suggesting a complex
interaction between SRCR members and cytokines. AIM
has also been shown to increase phagocytosis in macro-
phages, probably by acting as an opsonin (Haruta et al.,
2001), but it was the development of AIM knockout mice
that shed light on the function of this protein: AIM(�/�)
mice were shown to harbor significantly lower amounts
of CD4/CD8 double-positive thymocytes compared with
wild-type mice. Accordingly, AIM(�/�) double-positive
thymocytes showed increased sensitivity to apoptosis
induced by dexamethasone, irradiation, and CD95/Fas
crosslinking (Miyazaki et al., 1999). Indeed, AIM has
also been shown to protect macrophages from bacterial
pathogens such as L. monocytogenes (Joseph et al.,
2004), Bacillus anthracis, E. coli, and S. typhimurium
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(Valledor et al., 2004). Furthermore, addition of recom-
binant AIM was shown to rescue monocytes and thymo-
cytes at different maturation states from apoptosis (Mi-
yazaki et al., 1999), indicating that AIM binding results
in a survival stimulus in different cell lines. It was later
shown that AIM(�/�) challenged with heat-killed Co-
rynebacterium parvum also had lower numbers of T and
NK T cells within granulomas (Kuwata et al., 2003),
suggesting that these cells were also rescued from
apoptosis by AIM. This could have a significance at
inflammation sites, where AIM-expressing macrophages
would be more resistant to apoptosis and could there-
fore facilitate the clearance of the stimulus responsi-
ble for inflammation.

Overexpression of AIM, however, can also be damag-
ing to mice: transgenic mice engineered to express high
levels of AIM showed enhanced inflammatory response
to experimentally induced hepatitis (Haruta et al.,
2001), with large numbers of infiltrating cells and in-
creased tissue destruction. Moreover, transgenic mice
overexpressing myeloid-specific AIM show severe in-
flammation in the lung, resulting in increased incidence
of lung adenocarcinoma compared with wild-type mice
(Qu et al., 2009). Increased numbers of neutrophils and
macrophages, resulting from increased proliferation and
diminished apoptosis, infiltrated and accumulated in
the lung, changing the microenvironment by decreasing
expression of proapoptotic molecules and increasing the
levels of enzymes involved in tissue remodelling: this
has led researchers to believe that AIM can act as an
oncogene.

Macrophages are at the heart of atherosclerotic le-
sions, where they take up oxidized lipid products from
the bloodstream and develop into foam cells; the envi-
ronment in these lesions is known to be highly proapo-
ptotic (Geng and Libby, 2002). Uptake of oxidized LDL
has been reported to induce AIM expression in macro-
phages (Arai et al., 2005), which in turn results in de-
creased apoptosis and extended atherosclerotic lesions.
Furthermore, lesions in AIM(�/�) mice are dramati-
cally reduced compared with their AIM(�/�) counter-
parts: this indicates that AIM enhances atherosclerosis,
at least in the early stages of the disease, suggesting
that deletion/blockade of this protein could prevent the
development of atherosclerotic plaques. In the late
stages of atherosclerosis, however, AIM deletion
might prove detrimental because increased macro-
phage apoptosis could destabilize plaques and cause
acute vascular occlusion and tissue infarction.

A new role for AIM in lipid metabolism has recently
been described (Kurokawa et al., 2010). AIM was shown
to be endocytosed into adipocytes via CD36 and to sub-
sequently bind to fatty acid synthase, decreasing its
activity and stimulating the efflux of fatty acids and
glycerol from adipose cells. This effect resulted in de-
creased lipid droplet size, lower numbers of mature adi-
pocytes, and decreased weight and fat mass induced by

high-fat diet, without any visible alteration in metabolic
rates. The role of an innate immunity molecule such as
AIM in obesity is explained by the fact that adipose
tissues in obesity are in a state of chronic inflammation
induced mostly by recruitment of macrophages (Olshan-
sky et al., 2005; Baker et al., 2007).

Although a definite function for Sp� has not yet been
reported, this human protein has been shown to bind to
resting myeloid cell lines, as well as to peripheral blood
monocytes and some B and T cell lines (Gebe et al.,
1997); the significance of this binding remains unknown,
although the pattern of Sp� expression suggests that
this protein could be implicated in development and
maintenance of the lymphoid compartment, as well as in
immune surveillance. Like other SRCR family members,
Sp� can also act as a PRR (Sarrias et al., 2005) by
binding LPS and LTA through nonoverlapping sites. It
is noteworthy that a single SRCR domain from Sp�
retained the ability to interact with bacteria, which di-
rectly implicates SRCR domains in the PRR function.
There is evidence that AIM also acts as a pattern recog-
nition receptor (V. G. Martinez, unpublished results);
this could explain AIM expression in areas exposed to
blood-borne pathogens.

B. Therapeutic and Diagnostic Potential

Sp� has been shown to be a valuable marker for au-
toimmune disease (atopic dermatitis, asthma) and hep-
atitis-induced liver fibrosis. In the case of atopic derma-
titis, Sp� was found to be increased in the serum of
patients with the disease compared with healthy control
subjects (Kim et al., 2008). Eosinophilia is one of the
hallmarks of atopic dermatitis, and increased levels of
Sp� could protect eosinophils from apoptosis, thus in-
creasing their numbers and enhancing their activity as
effectors of allergic reactions. Sp� was also found to be
up-regulated in response to antigen challenge in the
bronchial lavage fluid of asthmatic patients compared
with nonasthmatic ones (Wu et al., 2005); in this case,
Sp� could also increase the numbers of eosinophils, as
well as induce the expression of tissue remodelling en-
zymes involved in the pathogenesis of asthma. As a possi-
ble marker of nonautoimmune disease, Sp� serum levels
were found to be increased in patients suffering from liver
fibrosis as a result of hepatitis C virus infection compared
with healthy control subjects (Gangadharan et al., 2007); if
validated, these markers could replace liver biopsy as the
method of choice for the diagnosis and follow-up of liver
fibrosis. All together, these results indicate that serum
levels of Sp� directly relate to the development and prog-
ress of autoimmune and inflammatory disease; this would
make Sp� an attractive marker for use in diagnosis and
patient monitoring.

XI. Concluding Remarks

The SRCR-SF is composed of a heterogeneous set of
proteins involved in a myriad of different functions. A
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significant number of proteins in this superfamily act as
pattern recognition receptors, working as pathogen sen-
sors and constituting a first line of defense against mi-
crobes. It is noteworthy that pattern recognition is the
earliest event in the immune response, making these
receptors valuable targets for anti-inflammatory ther-
apy both during infection and in autoimmune diseases.
Interfering with the function of these receptors with
blocking antibodies or small molecule antagonists inhib-
iting signal transduction could be a useful tool in the
treatment of chronic inflammation. Furthermore, solu-
ble forms of these receptors could be used in the man-
agement of infections, to aggregate and/or to facilitate
removal of bacteria from infected tissues, or even to
sequester LPS or zymosan—known septic shock-induc-
ing factors—from the bloodstream. Other members of
this superfamily, such as CD5 and CD6, seem to be
implicated in the regulation of the immune response,
both innate and adaptive, thus providing further oppor-
tunity to modulate the immune response through phar-
macological targeting of these proteins. Indeed, there is
great potential for the targeting of CD5 in patients with
septic shock, as preliminary studies suggest.

Deregulated expression of certain superfamily mem-
bers, such as DMBT1 or SCARA5, also seems to be
associated with cancer, whereas SR-AI/II plays a role in
the pathogenesis of atherosclerosis and possibly also
Alzheimer’s disease. The association of these proteins
with a pathological state makes them useful markers for
disease diagnosis and prognosis. Screening for polymor-
phisms or mutations in these proteins could also identify
populations at risk of disease development before any
symptoms or signs appear, thus playing an important
role in disease prevention.

All together, these proteins seem to contribute signif-
icantly to the regulation of the internal environment of
multicellular organisms, maintaining tissue homeosta-
sis. Although further research is needed to shed light on
some functional aspects of the SRCR-SF, their involve-
ment in a number of physiological and pathological sit-
uations makes them attractive targets for diagnosis and
therapy.
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T, Vives J, Font J, et al. (1999a) Identification of a natural soluble form of human
CD5. Tissue Antigens 54:128–137.
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Y, Freitas AA, Steinhoff U, Anderton SM, et al. (2008) TLR-activated B cells
suppress T cell-mediated autoimmunity. J Immunol 180:4763–4773.

Lankester AC, van Schijndel GM, Cordell JL, van Noesel CJ, and van Lier RA (1994)
CD5 is associated with the human B cell antigen receptor complex. Eur J Immunol
24:812–816.

Larsen R, Gozzelino R, Jeney V, Tokaji L, Bozza FA, Japiassú AM, Bonaparte D,
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Miró-Julià C, Roselló S, Martínez VG, Fink DR, Escoda-Ferran C, Padilla O,
Vázquez-Echeverría C, Espinal-Marin P, Pujades C, García-Pardo A, et al. (2011)
Molecular and functional characterization of mouse S5D-SRCRB: a new group B
member of the scavenger receptor cysteine-rich superfamily. J Immunol 186:
2344–2354.

Misra UK, Shackelford RE, Florine-Casteel K, Thai SF, Alford PB, Pizzo SV, and
Adams DO (1996) Maleylated-BSA induces hydrolysis of PIP2, fluxes of Ca2�,
NF-kappaB binding, and transcription of the TNF-alpha gene in murine macro-
phages. J Leukoc Biol 60:784–792.

Miyazaki T, Hirokami Y, Matsuhashi N, Takatsuka H, and Naito M (1999) Increased
susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine

996 MARTINEZ ET AL.

 by guest on D
ecem

ber 2, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


macrophage-derived soluble factor belonging to the scavenger receptor cysteine-
rich domain superfamily. J Exp Med 189:413–422.

Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, and Bhan AK (2002) Chronic
intestinal inflammatory condition generates IL-10-producing regulatory B cell
subset characterized by CD1d upregulation. Immunity 16:219–230.

Mollenhauer J, Deichmann M, Helmke B, Müller H, Kollender G, Holmskov U,
Ligtenberg T, Krebs I, Wiemann S, Bantel-Schaal U, et al. (2003) Frequent
downregulation of DMBT1 and galectin-3 in epithelial skin cancer. Int J Cancer
105:149–157.

Mollenhauer J, Helmke B, Medina D, Bergmann G, Gassler N, Müller H, Lyer S,
Diedrichs L, Renner M, Wittig R, et al. (2004) Carcinogen inducibility in vivo and
down-regulation of DMBT1 during breast carcinogenesis. Genes Chromosomes
Cancer 39:185–194.

Mollenhauer J, Helmke B, Müller H, Kollender G, Lyer S, Diedrichs L, Holmskov U,
Ligtenberg T, Herbertz S, Krebs I, et al. (2002) Sequential changes of the DMBT1
expression and location in normal lung tissue and lung carcinomas. Genes Chro-
mosomes Cancer 35:164–169.

Mollenhauer J, Herbertz S, Helmke B, Kollender G, Krebs I, Madsen J, Holmskov U,
Sorger K, Schmitt L, Wiemann S, et al. (2001) Deleted in Malignant Brain Tumors
1 is a versatile mucin-like molecule likely to play a differential role in digestive
tract cancer. Cancer Res 61:8880–8886.

Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, Schrøder HD,
Maier D, Breitling F, Wiemann S, et al. (2000) DMBT1 encodes a protein involved
in the immune defense and in epithelial differentiation and is highly unstable in
cancer. Cancer Res 60:1704–1710.

Mollenhauer J, Holmskov U, Wiemann S, Krebs I, Herbertz S, Madsen J, Kioschis P,
Coy JF, and Poustka A (1999) The genomic structure of the DMBT1 gene: evidence
for a region with susceptibility to genomic instability. Oncogene 18:6233–6240.

Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von
Deimling A, and Poustka A (1997) DMBT1, a new member of the SRCR super-
family, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat
Genet 17:32–39.

Møller HJ, Moestrup SK, Weis N, Wejse C, Nielsen H, Pedersen SS, Attermann J,
Nexø E, and Kronborg G (2006) Macrophage serum markers in pneumococcal
bacteremia: Prediction of survival by soluble CD163. Crit Care Med 34:2561–2566.

Møller HJ, Nielsen MJ, Maniecki MB, Madsen M, and Moestrup SK (2010) Soluble
macrophage-derived CD163: a homogenous ectodomain protein with a dissociable
haptoglobin-hemoglobin binding. Immunobiology 215:406–412.

Møller HJ, Peterslund NA, Graversen JH, and Moestrup SK (2002) Identification of
the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma.
Blood 99:378–380.

Morganelli PM and Guyre PM (1988) IFN-gamma plus glucocorticoids stimulate the
expression of a newly identified human mononuclear phagocyte-specific antigen.
J Immunol 140:2296–2304.

Mori M, Shiraishi T, Tanaka S, Yamagata M, Mafune K, Tanaka Y, Ueo H, Barnard
GF, and Sugimachi K (1999) Lack of DMBT1 expression in oesophageal, gastric
and colon cancers. Br J Cancer 79:211–213.

Mueller W, Mollenhauer J, Stockhammer F, Poustka A, and von Deimling A (2002)
Rare mutations of the DMBT1 gene in human astrocytic gliomas. Oncogene 21:
5956–5959.

Müller H, End C, Renner M, Helmke BM, Gassler N, Weiss C, Hartl D, Griese M,
Hafner M, Poustka A, et al. (2007) Deleted in Malignant Brain Tumors 1 (DMBT1)
is present in hyaline membranes and modulates surface tension of surfactant.
Respir Res 8:69.

Müller SA, Sasaki T, Bork P, Wolpensinger B, Schulthess T, Timpl R, Engel A, and
Engel J (1999) Domain organization of Mac-2 binding protein and its oligomeriza-
tion to linear and ring-like structures. J Mol Biol 291:801–813.

Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, and Takahashi K (1992)
Coexpression of type I and type II human macrophage scavenger receptors in
macrophages of various organs and foam cells in atherosclerotic lesions. Am J
Pathol 141:591–599.

Natali PG, Wilson BS, Imai K, Bigotti A, and Ferrone S (1982) Tissue distribution,
molecular profile, and shedding of a cytoplasmic antigen identified by the mono-
clonal antibody 465.12S to human melanoma cells. Cancer Res 42:583–589.

Natoli C, Iacobelli S, and Kohn L (1996) The immune stimulatory protein 90K
increases major histocompatibility complex class I expression in a human breast
cancer cell line. Biochem Biophys Res Commun 225:617–620.

Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van
Krieken JH, Hartung T, Adema G, and Kullberg BJ (2004) Toll-like receptor 2
suppresses immunity against Candida albicans through induction of IL-10 and
regulatory T cells. J Immunol 172:3712–3718.

Nicoletti A, Caligiuri G, Törnberg I, Kodama T, Stemme S, and Hansson GK (1999)
The macrophage scavenger receptor type A directs modified proteins to antigen
presentation. Eur J Immunol 29:512–521.

Nielsen MJ and Moestrup SK (2009) Receptor targeting of hemoglobin mediated by
the haptoglobins: roles beyond heme scavenging. Blood 114:764–771.

Nielsen MJ, Møller HJ, and Moestrup SK (2010) Hemoglobin and heme scavenger
receptors. Antioxid Redox Signal 12:261–273.

Nunes DP, Keates AC, Afdhal NH, and Offner GD (1995) Bovine gall-bladder mucin
contains two distinct tandem repeating sequences: evidence for scavenger receptor
cysteine-rich repeats. Biochem J 310:41–48.

Ohashi M, Kawamura K, Fujii N, Yubisui T, and Fujiwara S (1999) A retinoic
acid-inducible modular protease in budding ascidians. Dev Biol 214:38–45.

Oho T, Yu H, Yamashita Y, and Koga T (1998) Binding of salivary glycoprotein-
secretory immunoglobulin A complex to the surface protein antigen of Streptococ-
cus mutans. Infect Immun 66:115–121.

Ojala JR, Pikkarainen T, Tuuttila A, Sandalova T, and Tryggvason K (2007) Crystal
structure of the cysteine-rich domain of scavenger receptor MARCO reveals the
presence of a basic and an acidic cluster that both contribute to ligand recognition.
J Biol Chem 282:16654–16666.

Olsen NJ, Brooks RH, Cush JJ, Lipsky PE, St Clair EW, Matteson EL, Gold KN,

Cannon GW, Jackson CG, McCune WJ, et al. (1996) A double-blind, placebo-
controlled study of anti-CD5 immunoconjugate in patients with rheumatoid ar-
thritis. The Xoma RA Investigator Group. Arthritis Rheum 39:1102–1108.

Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, Hayflick L,
Butler RN, Allison DB, and Ludwig DS (2005) A potential decline in life expec-
tancy in the United States in the 21st century. N Engl J Med 352:1138–1145.
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Sánchez-Torres C, Gómez-Puertas P, Gómez-del-Moral M, Alonso F, Escribano JM,
Ezquerra A, and Domínguez J (2003) Expression of porcine CD163 on monocytes/
macrophages correlates with permissiveness to African swine fever infection. Arch
Virol 148:2307–2323.

Sankala M, Brännström A, Schulthess T, Bergmann U, Morgunova E, Engel J,
Tryggvason K, and Pikkarainen T (2002) Characterization of recombinant soluble
macrophage scavenger receptor MARCO. J Biol Chem 277:33378–33385.

Santiago-García J, Kodama T, and Pitas RE (2003) The class A scavenger receptor
binds to proteoglycans and mediates adhesion of macrophages to the extracellular
matrix. J Biol Chem 278:6942–6946.

Sardana G, Marshall J, and Diamandis EP (2007) Discovery of candidate tumor
markers for prostate cancer via proteomic analysis of cell culture-conditioned
medium. Clin Chem 53:429–437.

Sarrias MR, Farnós M, Mota R, Sánchez-Barbero F, Ibáñez A, Gimferrer I, Vera J,
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